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In this expository note, I’d like to explain the theoretical foundations of Anova from the viewpoint of

modern linear algebra. We’ll take an abstract perspective that ignores the distinctions between Anova,

Ancova, and regression analysis: so, for present purposes,1

Anova = multiple linear regression + hypothesis testing + a way of tabulating the results.

When Anova was introduced in the early 1900s, linear algebra was viewed in terms of matrices and

coordinate vectors—abstract vector spaces and operators didn’t start to grow popular until the 1920s–1930s.

In my opinion, the newer, coordinate-free approach is the best way to understand Anova. But most students

of statistics don’t know very much linear algebra, so the subject is often presented in an opaque, convoluted

way.

If you understand linear algebra and basic probability theory but don’t know much about Anova then

I hope that the explanation here will be more efficient (and more interesting!) than a lecture course

on regression analysis or a standard stats textbook. If you’re like me, you’ll have an easier time if you

understand the theory first, and only later dive into the specifics of experimental design such as contrasts,

factorial designs, and blocking.

If you already understand Anova on a practical level but are mystified by the magical formulas for

F statistics, hat matrices, and sums-of-squares, then this note might help you pull things together into a

coherent framework.

Contents

1 The theory 2

1.1 The spherical multivariate normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linear regression via orthogonal projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Least squares linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Least squares and the SMVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Why use least squares (and when not to) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The Additional Sum of Squares Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Degrees of freedom in Anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Bessel’s correction and its generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 * The Parallel Axis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The Snedecor F distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Anova tables 14

3 Odds and ends 16

3.1 An inequality involving the correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Should you be using Anova? 17

5 Acknowledgments 18

6 References 18

1Depending on who you ask, Anova also entails a certain batching or structuring of coefficients, and/or requires all coefficients

to be discrete. But our characterization captures the general mathematical spirit. For a rundown of the differences between Anova,

Ancova, and so on, see

https://www.quora.com/What-are-the-differences-between-ANOVA-ANCOVA-MANCOVA-etc/answer/Justin-Rising.
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1 The theory

Anova relies on four basic concepts, each of which we’ll explore in some depth:

1. The spherical multivariate normal distribution,

2. Linear regression via orthogonal projection,

3. The Pythagorean Theorem, and

4. The Snedecor F distribution.

Allow me to give a brief high-level overview. The normal distribution has some very special mathematical

features, which provide an interface to linear algebra that doesn’t exist for any other probability distribution.

Specifically, orthogonal decompositions of Euclidean space correspond to orthogonal decompositions of the

(spherical) multivariate normal distribution. It’s fortunate that the very same distribution that often arises

naturally (by virtue of its role in the Central Limit Theorem) is precisely the one that has this interplay with

linear algebra. If it weren’t for this coincidence then our entire framework would be far less valuable.

The Pythagorean Theorem finds use here in several ways, but the most salient is that it lets us express

the variance of a sample as (loosely speaking) the sum of variances along several orthogonal directions. The

result is a rough heuristic for measuring how well a model fits. This is what practitioners mean when they

say things like “so-and-so explains 84% of the variance in such-and-such”.

The Snedecor F distribution serves as a linchpin to join all this geometry and probability theory with the

statistical methodology of hypothesis testing.

1.1 The spherical multivariate normal distribution

The spherical or standard multivariate normal distribution (henceforth, SMVN) is the continuous probability

distribution on Rn
with density

fn(x) =
1

(2πσ2)n/2
exp

(
−

1

2σ2
(x21 + · · ·+ x2n)

)
, x = (x1, . . . , xn) ∈ Rn,

where n > 0 and σ > 0. We’ll use the (nonstandard) notation SN(Rn, σ2) for this distribution.2

The SMVN is special in that it enjoys two very nice properties:

(a) First, it’s the product of its marginals, i.e., its density satisfies

fn(x) = f(x1)f(x2) · · · f(xn), x ∈ Rn

where

f(x) =
1√
2πσ2

exp

(
−

x2

2σ2

)
, x ∈ R.

Recall that this is just the density of the univariate normal distribution SN(R, σ2) (≡ N(0, σ2)).

In intuitive terms, picking a random vector in Rn
according to SN(Rn, σ2) is equivalent to picking each

of its n coordinates independently according to SN(R, σ2).

(b) Second, it’s spherically symmetric about the origin. More precisely, it’s invariant under orthogonal

transformations: If A is an n×n real orthogonal matrix (i.e., one that represents a rotation or reflection),

then applying A to the entire distribution leaves it unchanged. That is, if X ∼ SN(Rn, σ2) then also

AX ∼ SN(Rn, σ2).

A remark on notation: IfV is ann-dimensional real inner product space, then the distributionSN(V, σ2) is

well-defined because by property (b) it doesn’t matter which orthonormal basis we use to specify the density.

In traditional notation for the multivariate normal, SN(V, σ2) is Nn(0, σ
2I) (after picking an orthonormal

2The parameter for normal distributions is always the variance σ2
rather than the standard deviation σ—this looks weird but is

consistent with the notation Nn(µ,Σ) for the general multivariate normal.
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ordered basis for V and thus identifying V with Rn
). And if W is subspace of V then SN(W,σ2) is

Nn(0, σ
2P), where P is the matrix that projects Rn

orthogonally onto W (the distribution Nn(0, σ
2P) is a

so-called degenerate multivariate normal distribution on Rn
whenever dim(W) < n.)

To see why SN(W,σ2) = Nn(0, σ
2P), notice that after a suitable orthogonal change of basis the matrix P

becomes diag(1, 1, . . . , 1, 0, 0 . . . , 0) (with dim(W) 1’s), and recall that for any matrix R ∈ Mn×n(R) we have

X ∼ Nn(0, Σ) =⇒ RX ∼ Nn(0, RΣR
T ).

An immediate consequence of (a) and (b), which we’ll need later, is that if we project the SMVN onto

any subspace then we get the SMVN on that subspace (with the same parameter σ2
). To put it formally,

take an n-dimensional real inner product space V with a k-dimensional subspace W, where 0 6 k 6 n. Let

π : V → W be the orthogonal projection. If X ∼ SN(V, σ2) then π(X) ∼ SN(W,σ2). The reason this follows

from properties (a) and (b) is that we can first rotate the distribution to line up the first k coordinate axes

with W, and then integrate out the other n− k coordinates along the orthogonal complement W⊥
. (By the

way, a slight modification of this argument explains why conditioning on X ∈ W also yields a multivariate

normal. In fact, we can condition on any translate of W (i.e, any affine subspace of V). And this “slicing”

property is also valid for non-spherical multivariate normal distributions, because those can be defined as

affine transformations of a spherical normal distribution.)

The two properties (a) and (b) of the SMVN—expressibility as the product of marginals, and invariance

under orthogonal transformations—are essential to Anova, as we’ll see in the next two sections. What’s more,

no other distributions will work, because in dimension n > 2 these two properties uniquely characterize

the SMVN!

Proof. Any probability density fn on Rn
that satisfies both (a) and (b) must satisfy

f(x1)f(x2) · · · f(xn) = fn(x) = fn

(
|x|

x

|x|

)
= f(|x|)f(0)n−1, x ∈ Rn (where |x| = ‖x‖2).

Assume that f is continuous.3 It’s not too hard to show that this implies f(x) > 0 for all x ∈ R, so we can

rearrange and take logarithms:

f(x1)

f(0)

f(x2)

f(0)
· · · f(xn)

f(0)
=

f(r)

f(0)
(where r = ‖x‖)

n∑
i=1

(
log f(xi) − log f(0)

)
= log f(r) − log f(0).

Since f must be an even function, we have f(x) = f(
√
x2) for all x ∈ R. Let g(t) = log f(

√
t) − log f(0) for

t > 0. The preceding equality becomes

n∑
i=1

g(x2i ) = g(r2),

or (by the Pythagorean Theorem)

n∑
i=1

g(x2i ) = g

(
n∑

i=1

x2i

)
.

But g is continuous, and every additive continuous function is linear,4 so g(t) = at for some a ∈ R. Thus,

log f(x) = ax2 + log f(0), or

f(x) = f(0)eax
2

, x ∈ R.

And we’re done. We must have a < 0 because f is a probability density; f(0) is just a normalizing constant.

The usual convention is to put a = − 1
2σ2 , then f(0) = (2πσ2)−1/2

.

3Actually, I believe that the assumption of continuity is unnecessary, though I haven’t worked out the details.

4The equation f(x+y) = f(x)+f(y) is called Cauchy’s functional equation. To prove that implies linearity, first show by induction

that f(r) = rf(1) for every r ∈ Q.
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Incidentally, there’s a well-known trick for evaluating the Gaussian integral

∫∞
−∞ e−x2

dx: Square the

integral and convert to polar coordinates. I have a professor who likes to say that a trick, when used more

then once, ceases to be a trick and becomes a device. But this is a “true trick”: As we’ve just seen, it’s a
theorem that this method of integration only works for integrands of the form ke−cx2

!

1.2 Linear regression via orthogonal projection

1.2.1 The linear model

I assume that the reader has seen linear regression before, so I’ll only give a concise overview.

The (univariate) linear model used in Anova is

y = Xβ+ ε, (1)

whereX is ann×(p+1) real matrix called the design matrix (by virtue of its role in the design of experiments);

β ∈ Rp+1
is called the parameter; and ε, a random element of Rn

with distribution SN(Rn, σ2), is called the

error. So y ∈ Rn
is also a random element of Rn

(whereas X and β are not random). The terminology I’m

using is slightly unorthodox: Statisticians prefer the plural forms vector of parameters and vector of errors.
For example, if

X =


1 x1
1 x2
.
.
.

.

.

.

1 xn


then eq. (1) becomes the so-called simple linear regression model

yi = β0 + β1xi + εi, εi
iid∼ N(0, σ2), 1 6 i 6 n.

Simple linear regression is a special case of multiple linear regression:

X =


1 x11 · · · x1p
1 x21 · · · x2p
.
.
.

.

.

.

.
.
.

.

.

.

1 xn1 · · · xnp

 ,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, εi
iid∼ N(0, σ2), 1 6 i 6 n.

Multiple linear regression should not be confused with multivariate linear regression, where in eq. (1) y
and β are replaced by matrices. I won’t discuss multivariate regression further.

We call the model of eq. (1) linear because the mean response µ := Xβ is a linear function of β. It’s not

necessary that µ be linear in the regressors x1, . . . , xq: in fact, in simple and multiple linear regression µ is

not linear but merely affine in the regressors, unless β0 = 0. As another example, the quadratic polynomial
model is a special case of the linear model:

X =


1 x1 x21
1 x2 x22
.
.
.

.

.

.

.

.

.

1 xn x2n

 ,

yi = β0 + β1xi + β2x
2
i + εi, εi

iid∼ N(0, σ2), 1 6 i 6 n.

We can take polynomials of arbitrary degree, so in principle the linear model is flexible enough to fit any

sample perfectly (i.e., with zero residual), as long as there are no replicates—no pairs of indices i1, i2 such

that the i1th and i2th row of X are equal, but yi1 6= yi2 .

4



Each tuple (xi1, xi2, . . . , xiq, yi) (associated with the ith row of eq. (1)) is called an observation or sampling
unit. The symbols xij are called explanatory variables or independent variables or regressors; the symbols yi

are called predicted variables or dependent variables or response variables (actually, there exist at least a dozen

synonyms). The sequence of alln observations is called the sample. So it’s conventional to speak of a “sample

of size n”, but not of “n samples”.

Note that the number of independent variables (q) is often much smaller than the width of the design

matrix (p+ 1).

Once the design matrix is chosen and the sample collected, the immediate goal is to obtain an estimate

β̂ for the parameter. We’ll call the resulting vector µ̂ := Xβ̂ the fitted vector. The fitted vector is an estimate

of the mean response µ. We’ll call e := y − Xβ̂ the residual. (The more common names are vector of fitted
values and vector of residuals respectively.)

It’s vital to understand the distinction between the error ε and the residual e. The error is part of the

model but cannot be determined from the sample unless the parameter β is known. The residual is not part

of the model, but is determined from the sample, because β̂ is a function of X and y. You may wish to peek

ahead to fig. 2.

I haven’t yet discussed this function (X,y) 7→ β̂. Choosing such a function is a major question in statistics

and in machine learning: How do we fit the model? In the language of statistics, the function is called an

estimator for β. The output of the function—which is a random variable because y is a random variable—is

also called an estimator. That is, statisticians often don’t draw the conceptual distinction between the function

and its output. For a given sample, the particular value that the estimator takes on (that is, the random

variate) is called an estimate of β. The symbol β̂ denotes either the estimator or the estimate, depending on

the context.

A schematic of the linear model is shown in fig. 1. On the left are the vectorized inputs (each is an

element of Rn
), on the right is the vectorized output (also an element of Rn

). The model can be thought of

as a machine that takes in data on the left and outputs randomized data on the right. Although we refer to

β as the “parameter”, we can see that there are actually three parameters: β, σ, and the functional form of

the model (the way in which the inputs are combined to form the design matrix X.) The number of inputs

q and the sample size n are also parameters, but after the data are collected they cannot be changed.

Figure 1: The linear model

A more common viewpoint is to not consider the functional form to be a parameter, but instead to

consider each functional form to have its own associated model with parameters β and σ. There isn’t really

one right way to think about things here: The question of whether you’re deciding on a model or deciding

on a parameter is a matter of semantics.

There are a couple of ways in which the linear can be used. First, a statistician might start with an

existing sample, and then try to find a configuration of parameters that is best matches the sample without

overfitting. For certain applications it’s desirable to have a parsimonious model: one where the functional

form is simple and there are not too many variables or coefficients βi. (There’s a large assortment of classical

methods for choosing a parsimonious model: Mallows’s Cp, AIC, added variable plots, variance inflation

factors, and so forth.) Typically an iterative optimization method is used: A simple functional form is

chosen, then the best possible β is found for that functional form (we’ll see momentarily how this is done),

and the model is evaluated for how well it explains the sample. If the fit is inadequate, then a slightly more

sophisticated functional form is chosen, and the process is repeated.

A second way to use the linear model is to decide on the functional form ahead of time, before data are

available. Then the data can be collected in a specific way so as to best answer a given question. These sorts
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of procedures fall under the purview of the subject called the design of experiments.

1.2.2 Least squares linear regression

Suppose we’ve decided on a functional form and collected a sample, so we have a matrix X and a vector

y. It’s time to fit the model: to find an estimate for β and σ2
. Computationally, the easiest way to get an

estimate β̂ for β is to minimize the Euclidean norm of the residual e (= y− Xβ̂):

β̂ = argmin

b∈Rp+1

|y− Xb|.

For example, in the case of multiple linear regression, this corresponds to finding the coefficients

β̂0, . . . , β̂p that minimize the so-called sum of squares of residuals

SSres :=

n∑
i=1

e2i =

n∑
i=1

(
yi − (β̂0 + β̂1xi1 + · · ·+ β̂pxip)

)2
.

More generally,

SSres :=

n∑
i=1

e2i =

n∑
i=1

(
yi − (Xβ̂)i

)2
.

Minimizing |e| amounts to making e orthogonal to the column space C(X) 6 Rn
. For n = 2 and n = 3,

this is visually intuitive (see fig. 2.) To prove the general case, we appeal to the Pythagorean Theorem:

Assume that β̂ satisfies (y− Xβ̂) ⊥ C(X). Such a β̂ necessarily exists by orthogonal decomposition of Rn
.5

And for any other point µ̂ ′ ∈ C(X) we have

|y− Xβ̂|2 = |y− µ̂ ′|2 − |Xβ̂− µ̂ ′|2 6 |y− µ̂ ′|2,

so Xβ̂ is indeed the closest point to y in C(X).

Figure 2: The geometry of least squares

If X has full column rank then we can give a simple explicit formula for the least squares estimate β̂.

First observe that XTX is invertible:

v ∈ ker(XTX) =⇒ (XTX)v = 0 =⇒ vTXTXv = 0 =⇒ (Xv)T (Xv) = 0 =⇒ Xv = 0 =⇒ v = 0.

Let β̂ = (XTX)−1XTy. Then

XT (y− Xβ̂) = XT
(
y− X(XTX)−1XTy

)
= XTy− XTy = 0,

so (y− Xβ̂) ⊥ C(X) as required.6

5There’s a more general result: For every Hilbert space H, every nonempty closed convex set E ⊆ H has the property that every

point in H has a unique best approximation in E. For finite-dimensional Hilbert spaces, the converse is true: If a set E has the

property “every point in H has a unique best approximation in E”, then E is convex. But it’s unknown whether this converse holds

for infinite-dimensional Hilbert spaces.

6When X doesn’t have full column rank, there’s more than one β̂ that satisfies the normality condition. The typical thing to do then

is to minimize |β̂|. For an in-depth study of similar problems, see: Wang, Wei, Qiao, Generalized Inverses: Theory and Computations,
Second Edition, Springer, 2018.
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To summarize, the estimate β̂ that minimizes the norm of the residual is the solution (not necessarily

unique) to

XT (y− Xβ̂) = 0.

This equation is called the normal equation because it’s satisfied by β̂ if and only if C(X) is normal to e.

The matrix H that orthogonally projects Rn
onto C(X) is called the hat matrix, because it transforms ‘y’

into ‘ŷ’ (a common synonym for ‘µ̂’). If X has full column rank, then the hat matrix is

H = X(XTX)−1XT .

The formula for H should look plausible because we want Hy = Xβ̂ where β̂ is the least squares estimate.

Here’s a proof of the formula. Let v ∈ Rn
, and decompose v as the sum of a vector orthogonal to C(X) and

a vector parallel to C(X):

v = v⊥ + v||.

Pick α such that v|| = Xα. Since XTv⊥ = 0, we have(
X(XTX)−1XT

)
v =

(
X(XTX)−1XT

)
Xα = X(XTX)−1(XTX)α = Xα = v||.

The projection matrix H (which sends y to µ̂) and its complementary partner I − H (which sends y to e)

will play a major role in what is to come.

1.2.3 Least squares and the SMVN

Several important results follow immediately. If these results aren’t obvious, try to build a geometric

understanding of the discussion in section 1.1.

First, the random variables

µ̂ = µ+Hε and e = (I−H)ε

(the least squares fitted vector and residual) are independent. Incidentally, since β̂ is a function of µ̂, this

implies that β̂ and e are independent.

Second, since y ∼ µ+ SN(Rn, σ2),

µ̂ ∼ µ+ SN(C(X), σ2) and

e ∼ SN(C(X)⊥, σ2)

where C(X) is the column space of X and C(X)⊥ is its orthogonal complement.

Finally, the covariance matrices of µ̂ and e are

Cov(µ̂) = σ2H,

Cov(e) = σ2(I−H).

1.2.4 Why use least squares (and when not to)

As we’ve shown, least squares regression is computationally convenient (only matrix arithmetic is

required) and gives a clean decomposition of the SMVN. Least squares has another pleasant characteristic:

It yields a maximum-likelihood estimate for β̂, because the density of the SMVN is monotonically decreasing

with distance from the origin, and the least squares estimate of β̂ is precisely the one that minimizes |µ̂−y|.
Unfortunately, in practice, errors are rarely normally distributed. For any real-world system the error

will have a skewed and/or fat-tailed distribution. In a sample from a fat-tailed distribution extreme points

will look like “outliers” relative to a normal distribution. If you happen to know the true distribution of

the error then you can get a maximum likelihood estimate by minimizing a cost function other than sum of

squares of residuals. For details on how to find the correct cost function, see

– Boyd, Stephen and Vandenberghe, Lieven. Maximum likelihood estimation. Convex Optimization.

Cambridge University Press, 2004. pp. 351–357.
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The requirement for errors to be normal is a fundamental limitation of Anova. Of course we can still

do a least squares fit even if the true error is not normal, but then all F statistics will be garbage. In some

scenarios it’s possible to get away without normality by appealing to the Central Limit Theorem. But this

needs to be done with care: Convergence to the normal can be slower than you might think, especially if

the underlying distribution is heavily skewed.

1.3 The Pythagorean Theorem

The usual Pythagorean Theorem for Rn
states that for every vector y = (y1, . . . , yn) ∈ Rn

,

|y|2 =

n∑
i=1

|yi|
2.

It will be convenient to work at a slightly higher level of abstraction: If y[1],y[2], . . . ,y[k]
are pairwise

orthogonal vectors in Rn
(actually, in any real inner product space) then∣∣∣∣∣

k∑
i=1

y[i]

∣∣∣∣∣
2

=

k∑
i=1

∣∣∣y[i]
∣∣∣2 .

In Anova, the response vector y is decomposed into pairwise orthogonal components by successive

projections onto linear subspaces, and then the magnitudes of these components are compared against one

another as part of a test of hypotheses. In typical applications the various subspaces are nested within one

another, and we’ll focus on that case exclusively.

To that end, a flag in Rn
is a chain of subspaces that includes {0} and Rn

. That is, a flag is a sequence

V0, V1, . . . , Vk of subspaces with

{0} = V0 ( V1 ( V2 ( · · · ( Vk = Rn.

The word “flag” is meant to evoke an actual flag flying in the wind: The flag spans a subspace of

dimension 2, the flagpole spans a subspace of dimension 1, the pointy end of the flagpole is a subspace of

dimension 0. Note that we can have k < n (when k = n, the flag is said to be complete: it contains a subspace

of every dimension between 0 and n.)

Every flag gives rise to a sequence of orthogonal projection operators πi : Rn → Vi, 0 6 i 6 k (these

correspond to successive “hat matrices”.) The projection operators π0, . . . , πk can be used to decompose the

vector y as follows:

y = y[1] + y[2] + · · ·+ y[k]

where y[i] := πi(y) − πi−1(y) ∈ Vi ∩ V⊥
i−1 for 1 6 i 6 k.

The components y[i]
are pairwise orthogonal because

y[j] ∈ Vj,

y[i] ∈ V⊥
i−1 ⊆ V⊥

j for 1 6 j < i 6 n.

It’s convenient to also introduce the notation

y[a,b] :=
∑

a6i6b

y[i]
for 1 6 a 6 b 6 k,

so that for example

y = y[1] + y[2,4] + y[5] + · · ·+ y[k].

The identity

|y|2 = |y[1]|2 + |y[2]|2 + · · ·+ |y[k]|2 (2)
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(and variations involving components of the form y[a,b]
) is referred to by statisticians as the Additional Sum

of Squares Principle. The statisticians’ terminology and conventions are explained further in section 1.3.1.

The k pairwise orthogonal subspaces Vi ∩ V⊥
i−1, 1 6 i 6 k decompose the SMVN into k independent

components. More generally, we can say something similar even if the mean of the normal distribution is

not 0. Assume that y is the response vector in the linear model (eq. (1)), and µ ∈ Vj for some fixed 0 6 j < k.

Then, by the properties of the SMVN discussed in section 1.1,

y[i] ∼ SN(Vi ∩ V⊥
i−1, σ

2) for j+ 1 6 i 6 k

and, moreover, the random elements y[j+1]
, . . ., y[k]

are mutually independent.

We’ll see in section 1.4 how Anova compares the lengths of the components y[j+1]
, . . ., y[k]

: Loosely

speaking, we should expect their lengths to be commensurate; a lack of commensurability is evidence against

the hypothesis µ ∈ Vj. It might not be obvious at this point that the lengths should be commensurate: the

effect only gets pronounced when the dimension of the space is large (i.e., for a large sample), because of

the phenomenon of concentration of measure in high dimensions (or, to put it another way, because of the

Law of Large Numbers.)

1.3.1 The Additional Sum of Squares Principle

The Additional Sum of Squares Principle (or Extra Sum of Squares Principle) is simply another name for the

Pythagorean Theorem in the context of Anova.

Here’s the best-known scenario. Suppose that the first column of X is all 1s, for example as in simple or

multiple linear regression. Let

V0 = {0}, V1 = span {1}, V2 = C(X), V3 = Rn.

where 1 = (1, 1, . . . , 1). Then

|y[2,3]|2 = |y[2]|2 + |y[3]|2. (3)

This identity is often written as

SStot = SSreg + SSres

where

SStot := |y[2,3]|2 = |y− y[1]|2 =

n∑
i=1

(yi − ȳ)2 is called the total sum of squares,

SSreg := |y[2]|2 =

n∑
i=1

(µ̂i − ȳ)2 is called the regression sum of squares,

SSres := |y[3]|2 =

n∑
i=1

(yi − µ̂i)
2

is called the residual sum of squares.

Here ȳ is the sample mean 1
n

∑n
i=1 yi, and µ̂i is the ith fitted value. The total sum of squares is more properly

called the corrected total sum of squares (it’s been corrected for the sample mean ȳ.)

A number of other conventions are in use:

Quantity Notation

Total sum of squares SStot, SST, TSS

Regression sum of squares SSreg, SSR, RSS, ESS

Residual sum of squares SSres, SSerr, SSR, RSS, SSE

The “ESS” in the second row of the table stands for explained sum of squares. The “SSE” in the third row

stands for “sum of squares of the error”, a common but incorrect phrase. Some people try to salvage the

abbreviation SSE by claiming that it stands for something like “sum of squared estimate of the error”, but

arguably that’s even worse (the residual is not a great estimator for the error, since it’s always smaller.)
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There are countless variations on the theme. For example, sometimes there are replicates in the sample—

sampling units with the same list of inputs (x1, . . . , xq) but with different response y. In that case it’s custom-

ary to putV1 = C(X) andV2 = span {(1, 1, . . . , 1, 0, . . . , 0), (0, . . . , 0, 1, . . . , 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, . . . , 1)}
so that projection onto V2 amounts to computing the mean response within each group. Equation (3) is

now written as

SStot = LFSS + PESS

where LFSS stands for lack of fit sum of squares and PESS stands for pure error sum of squares. This setup

is useful because it often has high statistical power for detecting a lack of fit, i.e., for rejecting the null

hypothesis that the data came from the model y = Xβ+ ε. See section 2 for an example of LFSS/PESS.

Another standard scenario is to compare the fit of two different functional forms with corresponding

design matrices XA and X, where C(XA) ⊆ C(X). (Usually XA is not described explicitly, but instead C(XA)
is simulated by placing a linear restriction on β.) The flag used here is

V0 = {0}, V1 = span {1}, V2 = C(XA), V3 = C(X), V4 = Rn.

The functional form of X is called the full model, the functional form of XA is called the restricted model. The

idea is to decide whether the restricted model is adequate to explain the data, or whether the full model is

necessary.

1.3.2 Degrees of freedom in Anova

The random variable y lives in Rn
, so it’s said to have n degrees of freedom.7 Its component y[i]

lives in

Vi ∩ V⊥
i−1 so it’s said to have

dfi := dim(Vi ∩ V⊥
i−1) = dim(Vi) − dim(Vi−1)

degrees of freedom. For example, in the first scenario of section 1.3.1 (multiple linear regression), if X has

full column rank then

df3 = dim(Rn) − dim(C(X)) = n− p− 1,

df2 = dim(C(X)) − 1 = p.

Since y[3]
is simply e, the quantity df3 is called the degrees of freedom of residual and is written as dfres.

And y[2] = π2(y)−π1(y) = µ̂− ȳ1, so the quantity df2 is called the (corrected) degrees of freedom of regression
and is written as dfreg. Their sum

dftot := dfres + dfres = (n− p− 1) + p = n− 1

is called the (corrected) total degrees of freedom. It’s equal to the number of degrees of freedom of the

component y[2,3] := y[2] + y[3]
.

The number of degrees of freedom is used for computing the F statistic. An intermediate step is to

compute the sum of squares of y[i]

SSi := |y[i]|2,

and mean square of y[i]

MSi :=
SSi

dfi
.

The mean square should be thought of as the average square deviation from 0 along the one-dimensional

components of y[i]
.

This is all we’ll need, though I should mention that the general concept of degrees of freedom in statistics

is quite a bit more complicated.

7Perhaps generalizing the notion will help clarify it: If w is a random element whose support suppw is a topological manifold,

then the number of degrees of freedom of w is dfw := dim(suppw).
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1.3.3 Bessel’s correction and its generalization

We’re now in a position to understand intuitively the notorious “n − 1” in the formula for the sample

variance,

s2 :=
1

n− 1

n∑
i=1

(yi − ȳ)2.

This formula gives an unbiased estimate of the variance σ2
when the sample is drawn independently

from N(µ, σ2) with unknown population mean µ. In terms of our linear model (eq. (1)), X is a single column

of 1s and β0 = µ; there are no regressors. Notice that µ = µ1. Take the flag

V0 = {0}, V1 = C(X) = span(1), V2 = Rn.

Decompose the response as y = y[1] + y[2]
. We have

y ∼ µ+ SN(Rn, σ2),

y[1] ∼ µ+ SN(span(1), σ2),

y[2] ∼ SN(span(1)⊥, σ2).

But y[2] = (y1− ȳ, . . . , yn− ȳ) and df2 = n−1, so the expression for s2 is precisely the mean square of y[2]
.

The expectation of s2 is σ2
because the expectation of the square of a single one-dimensional component of

the SMVN is E(x2) = E(x2)−E(x)2 = σ2
. Furthermore, it’s hopeless to somehow extract information about

σ2
from the remaining component y[1]

, because we don’t know how far y is from µ along the axis span(1).
More generally, suppose that the sample came from a linear model with arbitrary (but known) functional

form. As long as C(X) ( Rn
, we can still learn about σ2

by examining the component of y orthogonal to

C(X). If X has full column rank p+ 1, then (by reasoning just as above) an unbiased estimate for σ2
is

s2 =
1

n− p− 1

n∑
i=1

(yi − µ̂i)
2.

For example, in simple linear regression we get

s2 =
1

n− 2

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

An enticing picture begins to come into focus: The output y from the model depicted in fig. 1 can be

thought of as joint information about the mean µ (equivalently, β) and the variance σ2
. If we know a priori

that µ lies within a subspace C(X) 6 Rn
then the information decomposes neatly into two orthogonal

components y[1] ∈ C(X) and y[2] ∈ C(X)⊥, the former being purely information about the mean and the

latter being purely information about the variance. Making this idea precise will have to wait for some other

day.

1.3.4 * The Parallel Axis Theorem

The Parallel Axis Theorem is a computational tool for working with second moments, purloined from

classical mechanics. While we won’t need it for what we’re doing, it’s nice to know that it’s really just the

Pythagorean Theorem in disguise.

Theorem (Parallel Axis). Let X be a real-valued random variable with mean µ and finite variance. Then, for every
c ∈ R,

E((X− c)2) = Var(X) + (µ− c)2.

Proof. The random variable X is a point in the Hilbert space L2(ξ) where ξ is the distribution of X. If we

also consider c and µ as constant functions in L2(ξ), the identity may be rewritten as

‖X− c‖2 = ‖X− µ‖2 + ‖µ− c‖2.

11



But this is a special case of the Pythagorean Theorem because

〈X− µ, µ− c〉 = (µ− c)〈X− µ, 1〉
= (µ− c)

(
〈X, 1〉− 〈µ, 1〉

)
= (µ− c)(µ− µ)

= 0.

1.4 The Snedecor F distribution

The most natural way to define the Snedecor F distribution is in terms of normal random variables.

Textbooks often take the backwards approach: They define the Snedecor F distribution via its PDF and then

present its characterization in terms of normal variables as a consequence, as though it were just a happy

coincidence. We won’t bother with the PDF here.

Take σ > 0 and d1, d2 ∈ N>0. Let U1, . . . , Ud1
, W1, . . . , Wd2

be mutually independent random

variables with distribution N(0, σ2), and define

Fd1,d2
:= the distribution of

(U2
1 + · · ·+U2

d1
)/d1

(W2
1 + · · ·+W2

d2
)/d2

.

The distribution Fd1,d2
depends on d1 and d2, but it doesn’t depend on σ2

because rescaling both numerator

and denominator by the same quantity leaves Fd1,d2
unchanged. We call Fd1,d2

the Snedecor F distribution or

simply the F-distribution with parameters d1 and d2 (sometimes called the numerator and denominator degrees
of freedom, respectively.)

Equivalently, Fd1,d2
is the distribution of

Xd1
/d1

Xd2
/d2

for independent Xd1
∼ χ2(d1) and Xd2

∼ χ2(d2), because the chi-square distribution on k degrees of

freedom is precisely the distribution of the sum of squares of k independent N(0, 1) variables. Similarly, it’s

the distribution of

|Sd1
|2/d1

|Sd2
|2/d2

for independent Sd1
∼ SN(Rd1 , σ2) and Sd2

∼ SN(Rd2 , σ2). Notice that this last characterization is

essentially as a ratio of mean squares (as defined in section 1.3.2.)

Let Xk ∼ χ2(k). As k grows, the distribution of Xk/k concentrates near 1 (fig. 3). This follows from the

Law of Large Numbers because for U ∼ N(0, σ2) we have E[U2] = E[(U − 0)2] = Var[U] = σ2
. Likewise,

|Sd1
|2/d1 converges in probability to σ2

as d1 → ∞. When both d1 and d2 are large, both numerator and

denominator are concentrated near σ2
, and thus Fd1,d2

is concentrated near 1 (fig. 4).

Now on to null hypothesis significance testing. Suppose that we have a flag

{0} = V0 ( V1 ( V2 ( · · · ( Vk = Rn,

and suppose also that µ ∈ Vj for some 0 6 j < k. Let y ∼ µ+ SN(Rn, σ2), and write

y = y[1] + · · ·+ y[j] + y[j+1] + y[j+2,k]

as in section 1.3. Then evidently

|y[j+1]|2/dfj+1

|y[j+2,k]|2/dfj+2,k

∼ F
dfj+1,dfj+2,k

(4)

where dfj+1 = dim(Vj+1 ∩ V⊥
j ) and dfj+2,k = dim(V⊥

j+1).
In this scenario Vj corresponds to the restricted model and Vj+1 corresponds to the full model. The null

hypothesis is that µ belongs to the restricted model. If the observed value of the statistic in eq. (4) is large
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Figure 3: Density of χ2(k)/k for k = 1, 3, 10, 30, 100, 300

Figure 4: Density of Fk,k = χ2(k)/k
χ2(k)/k

for k = 1, 3, 10, 30, 100, 300
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relative to the mode of the F-distribution (we do a one-tailed test here) then we have evidence against the

null hypothesis.

Note that the choice of full model doesn’t affect the null hypothesis: it only affects the power of the test.

So a high F statistic is evidence against the restricted model but is not evidence for the full model; at least,

not within the framework of null hypothesis significance testing.

Equation (4) is usually written in a form closer to

F
obs

=
(SS

′
res

− SSres)/(df
′ − df)

SSres/df

∼ F(df
′ − df, df),

where SSres is the sum of squares of residual of the full model, SS
′
res

is the sum of squares of residual of the

restricted model, df is the number of degrees of freedom of the residual of the full model, and df
′

is the

number of degrees of freedom of the residual of the restricted model.

As a side note, it should now be clear from section 1.3.3 why the F-distribution can be used for comparing

the standard deviations of two populations: The F-test uses the fact that if the standard deviations are equal

then

s21
s22

∼ Fn1−1,n2−1,

where s21, s
2
2 are the sample variances and n1, n2 are the sample sizes.

2 Anova tables

The Anova table is a more-or-less standardized format for displaying F tests and their associated p-values

for a sequence of linear models. These tables regularly crop up in scientific papers. In this section we’ll

briefly examine a typical Anova table (fig. 5), filched from a random paper.8

We’ve already covered the meaning behind all the tests, so this section serves only to establish a corre-

spondence between the structure of the table and the development above.

Figure 5: An Anova table from the wild

The table was constructed from an analysis of a sample of size 20. The label “Total” in the bottom row

should technically be “Corrected Total” (the data were corrected for the sample mean), but it’s common to

just write “Total”. The sum of squares for the corrected total is |y − µ1|2 = 4.64 on 20 − 1 = 19 degrees of

freedom, where µ is the overall sample mean
1
n

∑20
i=1 yi. The other rows show a breakdown of the corrected

total sum of squares into its components.

8The table was found in: Basegmez et al. Biorening of blackcurrant pomace into high value functional ingredients using supercritical

CO2, pressurized liquid and enzyme assisted extractions. Journal of Supercritical Fluids, 2017.
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At the highest level, the total sum of squares is broken down into two orthogonal components: the

“Model” (or regression) sum of squares, and the “Residual” sum of squares. Notice that 4.64 = 4.39 +
0.26. Occasionally, the remaining rows are indented to make the hierarchical structure of the table more

transparent.

The (full) model used was

y = β0 + β1P + β2T + β3t+ β4PT + β5Pt+ β6Tt+ β7P
2 + β8T

2 + β9t
2 + ε.

Let X be the design matrix of the full model; the size of X is 20 × 10. The top-level breakdown, in our

language, corresponds to the flag

V0 = {0}, V1 = span(1), V2 = C(X), V3 = R20.

The corrected total sum of squares is |y[2,3]|2 = |y− y[1]|2; the model sum of squares is |y[2]|2; the residual

sum of squares is |y[3]|2. Note that y[2]
has 10− 1 = 9 degrees of freedom and y[3]

has 20− 10 = 10 degrees

of freedom, as is displayed in the corresponding rows of the table.

The mean square is simply the ratio of sum of squares to degrees of freedom. The F Value (or F statistic)

in the Model row is 18.95 = 0.49/0.026: the ratio of mean square of the model to the mean square of the

residual. The p-value is P(F > 18.95) where F ∼ F9,10. This p-value is quite low, which indicates strong

evidence against the hypothesis that µ ∈ V1, that is, that the data came from a model of the form y = µ+ ε.

Next we move on to the breakdown of the residual into “Lack of Fit” and “Pure Error”. These two

phrases always indicate that there were replicates in the sample—often an experiment will be designed this

way on purpose. Let k be the number of groups (within each group, every sampling unit has the same P,

T , and t), and let W be the design matrix of the model that can assign an arbitrary mean to each group:

yi = µ1g1(i) + · · ·+ µkgk(i) + εi,

where gj(i) = 1 if the ith unit is in the jth group, and gj(i) = 0 otherwise. Notice that C(X) ⊆ C(W), so we

can extend the flag to

V0 = {0}, V1 = span(1), V2 = C(X), V3 = C(W), V4 = R20.

The “Pure Error” sum of squares is |y[4]|2; the “Lack of Fit” sum of squares is |y[3]|2. We can deduce from

the Pure Error degrees of freedom that there are k = 20 − 5 = 15 groups. If the full model is valid then

µ ∈ C(X), so the ratio (|y[3]|2/5)/(|y[4]|2/5) is distributed according to F5,5. The observed F value 0.25 is not

significantly higher than 1, so this test doesn’t give evidence against the full model.

The Model sum of squares is broken down into 9 components (rows P through t2 in the table). Here

there are two conventions for displaying the sum of squares: The sequential sum of squares (often explicitly

indicated in the table header as Seq. SS) and adjusted sum of squares (often indicated as Adj. SS).9 Sequential

sum of squares means that the flag is generated by adding one component at a time, in the same order as

they appear in the table: For example, the PT row’s sum of squares would be computed by comparing the

two models

y = β0 + β1P + β2T + β3t+ ε,

y = β0 + β1P + β2T + β3t+ β4PT + ε.

Adjusted sum of squares would mean that all coefficients except β4 are present in the model, that is, the

adjusted sum of squares for the PT row is computed by comparing the two models

y = β0 + β1P + β2T + β3t+ β5Pt+ β6Tt+ β7P
2 + β8T

2 + β9t
2 + ε,

y = β0 + β1P + β2T + β3t+ β4PT + β5Pt+ β6Tt+ β7P
2 + β8T

2 + β9t
2 + ε.

So for example, in the case of adjusted sum of squares, the F statistic is the ratio of the row’s mean square

to the residual mean square.

9A more comprehensive taxonomy is Type I, II, III, and IV sums of squares, but never mind...
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One other statistic that is often present at the bottom of an Anova table is the so-called coefficient of
determination R2

(pronounced “ar squared”). The coefficient of determination is

R2 :=
SSreg

SStot

= 1−
SSres

SStot

.

It’s meant to encode the “fraction of variance explained by the model”. A related statistic is the fraction of
variance unexplained

FVU := 1− R2 =
SSres

SStot

.

Another way to measure the fraction of variance explained is to compare the mean squares instead of the

sums of squares. This gives the adjusted R2
,

R2
adj

:= 1− (1− R2)
n− 1

n− p− 1
= 1−

SSres/dfres

SStot/dftot

.

3 Odds and ends

3.1 An inequality involving the correlation coefficient

In an analysis of variance between groups, we naturally expect the in-group variance to be less than the

total variance. If the correlation between the group index and the response is close to ±1 then the in-group

variance should be significantly less than the total variance.10 The following theorem formalizes this idea,

and generalizes it to arbitrary bivariate distributions.

Theorem. Let X and Y be real-valued random variables with finite positive variance, and ρ their correlation:

ρ ≡ ρ(X, Y) :=
Cov(X, Y)√

Var(X)
√

Var(Y)
.

Then
E(Var(Y | X)) 6 (1− ρ2)Var(Y).

Remark. In the case of group-means Anova, X is a discrete variable that specifies the group, and Y is

the response. The reason we only have an upper bound is that it’s possible that X predicts Y very well but

nonlinearly, so we might have ρ ≈ 0 but still E(Var(Y | X)) = 0.

Proof. We will use the covariance-variance form of the Cauchy–Schwartz Inequality,∣∣〈U− EU, V − EV〉
∣∣2 6 ‖U− EU‖2‖V − EV‖2

Cov(U,V)2 6 Var(U)Var(V).

With U = E(Y | X) and V = X, we get

Var(E(Y | X))Var(X) > Cov(E(Y | X), X)2

=
(
E(E(Y | X)X) − E(E(Y | X))E(X)

)2
by definition of covariance

=
(
E(E(XY | X)) − E(Y)E(X)

)2
by pull-out property and tower rule

=
(
E(XY) − E(Y)E(X)

)2
by tower rule

=
(

Cov(X, Y)
)2

= ρ2 Var(X)Var(Y) by definition of ρ.

10There are a few pretty graphs of this phenomenon at https://en.wikipedia.org/wiki/Analysis_of_variance#Example.
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Dividing through by Var(X):

Var(E(Y | X)) > ρ2 Var(Y)

Var(Y) − E(Var(Y | X)) > ρ2 Var(Y) by law of total variance for Y

E(Var(Y | X)) 6 (1− ρ2)Var(Y).

4 Should you be using Anova?

The most accessible statistical methods are also the most misused, and Anova is no exception. The

regression model used by Anova relies on some very strong assumptions that almost never hold in practice:

Assumption 1: A linear parametric model is appropriate for the system being studied. In particular, the

predictors must directly cause the response, i.e., the causal network must look like this:

Figure 6: A flat causal network

And it’s not enough for the predictors x1, x2, . . . , xn to be under control merely for the

duration of the experiment: It’s necessary that the actual real-world system you’re studying

behaves this way. This is true in industrial settings, where the predictors represent inputs

to a production process. And this is the classical application of Anova: Determining crop

yield as a function of various growing conditions. But in natural systems, causal networks

tend to be much more messy (when they exist at all.)

For further discussion along these lines, see the book by Pearl and Mackenzie in the refer-

ences below.

Assumption 2: The predictors are determined exactly, with no measurement error or any other kind of

error. Error exists only in the response variable y (see section 1.2 for the functional form of

the model).

Assumption 3: The errors in the response are independent and identically distributed according to a normal

distribution with mean 0.

Proponents claim that Anova is robust against some violations of these assumptions (esp. normality of

errors), but I have yet to see a convincing argument.

Remember also that there are many other tools available. Consider your goal:

• Are you trying develop a conceptual model to understand some real-world system? Then you should

do more theoretical work to come up with a realistic model instead of shoehorning everything into a

linear setting. For example, you could create a causal Bayesian network, or another kind of probabilistic

graphical model.

• Are you trying to create an empirical predictive model? Then (depending on what you plan to do with

it later) you might not care how simple your model is. Don’t use polynomial regression unless you

have good reason to believe that a polynomial model is suitable. Better to fit a spline or a Gaussian

process,11 or use some other nonparametric model.

11For a guide to fitting Gaussian processes, see https://yugeten.github.io/posts/2019/09/GP/.
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Anova was developed by Ronald Fisher the early 1900s. Back then, it would have been computationally

prohibitive to fit a nonlinear model. Today we can do much better. If your goal is to build a predictive

model, look into machine learning. For more on this topic, see

– Breiman, Leo (2001). Statistical Modeling: The Two Cultures. Statistical Science, Vol. 16, No. 3,

199–231.

• If you’re setting up a controlled experiment, Anova might be acceptable, but make sure that the

assumptions above are satisfied.

Despite its drawbacks, Anova remains very popular, so it’s worth taking the time to learn how it works.

At the very least, you’ll learn to better appreciate its limitations, so you’ll be able to identify where it’s

misused.

As for null significance hypothesis testing, enough has been written on the topic. Let me just point to

two excellent papers:

– Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997–1003.

– Blakeley B. McShane, David Gal, Andrew Gelman, Christian Robert & Jennifer L. Tackett. (2019).

Abandon Statistical Significance. The American Statistician, 73:sup1, 235–245.

Disclaimer: I’m not an expert, so don’t take any of my opinions here too seriously. This is a work in

progress! According to statistician Andrew Gelman, Anova is “more important than ever.”12
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