
The Edwards–Sokal Coupling for the
Potts Higher Lattice Gauge Theory on Zd

by
Yakov Shklarov

B.Sc., University of Victoria, 2021

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Mathematics and Statistics

© Yakov Shklarov, 2023
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other
means, without the permission of the author.



The Edwards–Sokal Coupling for the
Potts Higher Lattice Gauge Theory on Zd

by
Yakov Shklarov

B.Sc., University of Victoria, 2021

Supervisory Committee

Dr. Anthony Quas (Department of Mathematics and Statistics, University of Victoria)
Co-Supervisor

Dr. Gourab Ray (Department of Mathematics and Statistics, University of Victoria)
Co-Supervisor

ii



Abstract

The Edwards–Sokal coupling of the standard Potts model with the FK–Potts (random-cluster)

bond percolation model can be generalized to arbitrary-dimension cells. In particular, the Potts

lattice gauge theory on Zd has a graphical representation as a plaquette percolation measure. We

systematically develop these previously-known results, using the frameworks of cubical (simpli-

cial) homology and discrete Fourier analysis.

We show that, in the finite-volume setting, the Wilson loop expectation of a higher cycle γ

is equal to the probability that γ is a homological boundary in the higher FK–Potts model. We

also prove the strong FKG property of the higher FK–Potts model. These results culminate in a

simple proof for the existence of infinite-volume limits in the higher Potts model and, in certain

cases, of their invariance under translations and other symmetries. Additionally, we thoroughly

examine the behavior of boundary conditions as they relate to the Edwards–Sokal coupling, for

the purpose of understanding the higher Potts Gibbs states. In particular, we discuss spatial

Markov properties and conditioning in the higher FK–Potts model, and generalize to more general

boundary conditions the FKG property, the aforementioned identity for Wilson loop expectations,

and a result about monotonicity in the coupling strength parameter. Also, we prove a theorem

regarding the sharpness of thresholds of increasing symmetric events for the higher FK–Potts

model with periodic boundary conditions.

In the final section, we describe some matrix-based sampling algorithms. Lastly, we prove a

new characterization of the ground states of the random-cluster model, motivated by the problem

of understanding the ground states in the higher FK–Potts model.
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Introduction

Lattice spin models have been studied via graphical representations since at least the 1970s [Gri06,

p. 341]. The idea behind a graphical representation is to express quantities of interest in terms

of other quantities derived from a configuration space of a graph (see [Dum16] for a general

introduction.) One of the most famous graphical representations, the random-cluster model, is

family of bond percolation measures that can be probabilistically coupled to the Ising model and

to its n-spin generalization, the Potts model. Results from the theory of percolation carry across

the coupling to prove statements about the Ising model. The random-cluster representation is

well-studied and even has its own textbook [Gri06]. Our aim here is to generalize to a certain class

of lattice gauge models, which are essentially like the Potts model except with spins assigned to

the edges of the hypercubic lattice rather than to its vertices. In fact, even more generally, we’ll

describe a class of couplings for the corresponding higher lattice gauge theories which assign spins

to elements of higher-dimension cells (plaquettes, 3-cubes, etc.)1

Lattice gauge theories are meant to serve as discretizations of certain quantum field theories

[Cha19]. Our higher random-cluster model has been floating around the literature in some form for

several decades, but it hasn’t been mathematically developed in an entirely rigorous way. The key

difficulty is that extending to higher dimension requires homology theory (this has been known

for some time [DW82; AF84].) In particular, Aizenman and Fröhlich showed that the formula for

the random-cluster model does not extend in an obvious way to a useful plaquette percolation

model [AF84]. This thesis consists of a precise development of a model suitable for coupling to

the the Potts lattice gauge theory, with rigorous proofs of a few initial results.

The purpose of developing the graphical representation is to understand the behavior of certain

observables called Wilson loops in the lattice gauge theory. This problem has received considerable

attention in the last several years (e.g., [Cha20; Cao20; FLV21]) and this, in part, is what spurred

the present work.

During the preparation of this thesis, a preprint was released by Duncan and Schweinhart with

substantial overlap with this thesis [DS23]. Duncan and Schweinhart write in considerable depth,

presenting some results in homological percolation—area and perimeter laws, and a theorem

about hypersurfaces in the infinite-volume limit of the torus, with applications to Swendsen–Wang

dynamics. Also, they discuss duality. Their preprint requires the parameter q to be prime, and

1Higher gauge theory can be quite challenging algebraically—see [BH11; Pfe03]—but we won’t need such advanced
algebraic machinery here.
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the proof there of the “probability = expectation” theorem (there Theorem 5, here Theorem 41) is

not valid for non-prime q [DS23, p. 11]. However, for the model given here (and also mentioned

in [DS23, p. 11]) this result does indeed hold for all integer q ⩾ 1. Also, Duncan and Schweinhart

refer to [HS16], which proves FKG for prime q. The proof given herein (theorem 35) is different

because it must work for arbitrary integer q ⩾ 1, not only prime q, and so it cannot rely on Betti

numbers. This is important because ultimately we’d like to consider more general gauge groups.

Finally, the discussion of boundary conditions here (section 4) is more comprehensive, and the

discussion of infinite-volume limits (section 5) is very different from that in [DS23, §4.2].

This thesis contains no new theorems regarding phase transitions or the decay of correlations.

Instead, its purpose is to develop the graphical representation in full rigor, to establish some

basic results as a foundation for further work, and to serve as an expository introduction to the

area. Perhaps the key results are the strong FKG property (theorems 35 and 62), which gives

rise to many useful properties of the higher FK–Potts (generalized random-cluster) model; and

“expectation equals probability” (theorems 41 and 64), which explains why the coupling is useful.
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1 Prelude: The Ising and Potts models and the random-cluster model

This section is an informal introduction to our graphical representation, which is described more

rigorously and in greater generality in section 3.

Recall that the Ising model on a finite box V = {−n, . . . , n}d ⊆ Zd is the probability distribution

on the spins-on-vertices configuration space Σ := {−1,+1}V given by

πβ(σ) :=
exp

(
1
2β

∑
v∼w σvσw

)∑
σ ′∈Σ exp

(
1
2β

∑
v∼w σ

′
vσ

′
w

) , β ∈ (0,∞), σ ∈ Σ := {−1,+1}V ,

where the sums are over all pairs (v,w) of adjacent vertices in V . (Actually, the Ising model

is more general: Here we’re assuming free boundary condition, uniform interaction strength,

zero external field, and the hypercubic lattice as the underlying graph.) The parameter β is

analogous to a physical system’s inverse temperature (reciprocal of temperature as measured from

absolute zero.) The factorH(σ) = −1
2

∑
v∼w σvσw, called the Hamiltonian, is a kind of generalized

energy function. As temperature rises, the measure πβ converges to the uniform distribution; as

temperature falls, πβ puts more and more probability mass on the configurations with most spins

equal. In the infinite-volume limit, an abrupt phase transition appears. There are many ways

to characterize this phase transition—for example, by studying the spatial decay of correlations

between two vertices. The study of this phase transition is inspired by the Curie transition in

physical ferromagnetic materials (although real-world magnets are much more complicated, and

not described very well by the Ising model.)

The slightly more general Potts model (introduced in [Pot52]; see also [Wu82]) allows the spins

to come from a general finite cyclic group Z/qZ, (or rather, a set of size q, because the group

structure isn’t used):

πβ,q(σ) :=
exp (β

∑
v∼wJσv = σwK)∑

σ ′∈Σ exp (β
∑

v∼wJσ ′
v = σ ′

wK)
, β ∈ (0,∞), q ∈ Z⩾2, σ ∈ Σ := (Z/qZ)V ,

where J·K is the indicator function.2 Different Hamiltonians can be given for this vertex config-

uration space Σ. Sometimes, instead of H(σ) = −
∑

v∼wJσv = σwK, we take the Hamiltonian

H(σ) = −
∑

v∼w σv ·σw where σv ·σw := cos 2π(σv−σw) (now we are using the group structure),

2The symbol J·K is also called the Iverson bracket; for a predicate P it’s defined as JPK :=

{
1, P true,
0, P false.

We’ll make

heavy use of the indicator function, so the Iverson bracket was chosen over the notation 1P or 1P in order to keep the
notation clean.
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which gives the so-called clock model or planar Potts model. The clock model was introduced in

the same paper as the Potts model [Pot52]; see also [Dum16, pp. 3–4] for a more modern exposi-

tion. Much more generally, it’s possible to allow the spins to come from an arbitrary compact Lie

group—this is especially useful for studying gauge theories [Cao20, §1.1]. However, we’ll work

exclusively with Z/qZ and the Potts model.

LetEbe the set of all nearest-neighbor edges, or “bonds”, between the verticesV = {−n, . . . , n}d.

LetΩ := {0, 1}E. We’ll write edges as ordered pairs e = (v,w), for v,w ∈ Zd, always in the forwards

orientation (i.e., the sum of the d components of w is one greater than the sum of the components

of v). For any particular configuration ω ∈ Ω, an edge e is considered open if ωe = 1 and closed

if ωe = 0. Let o(ω) and c(ω) be the number of edges that are open and closed, respectively. A

cluster is a connected component in the graph (V, E). Let k(ω) be the number of clusters, including

isolated vertices. The random-cluster model is the probability distribution on edge configurations

φp,q(ω) :=
1

ZRC(p, q)
(1− p)c(ω)po(ω)qk(ω),

p ∈ (0, 1), q ∈ (0,∞), ω ∈ Ω := {0, 1}E,

where the random-cluster partition functionZRC(p, q) is the normalizing constant
∑

ω∈Ω(1−p)c(ω)

po(ω)qk(ω). Note that for q = 1 this reduces to independent Bernoulli(p) bond percolation.

The random-cluster model with q = 2 is sometimes called the FK–Ising model; with q restricted

to 2, 3, 4, . . ., it’s called the FK–Potts model. For these choices of parameter q there are couplings to

the Ising and Potts models, which we’ll now describe.

The Edwards–Sokal coupling [ES88] of the Potts and FK–Potts models is

µp,q(σ,ω) :=
1

ZES(p, q)
(1− p)c(ω)po(ω)J(σ,ω) ∈ FK,

p ∈ (0, 1), q ∈ {2, 3, 4, . . .}, (σ,ω) ∈ Σ×Ω,

where ZES(p, q) is the normalizing constant like before, and J(σ,ω) ∈ FK is 1 if the endpoints of

each ω-open edge have equal spins in σ, and 0 otherwise. In the former case, we say that the

configuration (σ,ω) is valid, or that the configurations σ and ω are compatible, and we let F be

the set of all valid configurations (σ,ω) ∈ Σ × Ω (the notation F is from [Gri06, p. 8].) So the

measure µp,q is the product of the iid Bernoulli(p) measure on edges and the uniform measure on

Σ, conditioned on the event F.
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Note that each open edge imposes a linear constraint on Σ (viewed as a Z-module): If an edge

e = (v,w) is open in ω then, in order for (σ,ω) ∈ F, it’s necessary that σv − σw = 0. The closed

edges impose no constraints. This algebraic perspective will be useful when we generalize to

higher dimensions, so we’ll describe it in some more detail. For every edge configuration ω ∈ Ω,

let Aω = (Z/qZ)O(ω) where O(ω) is the set of all open edges in ω. Endow Aω with the product

group structure, and likewise for Σ = (Z/qZ)V . Define a group homomorphism fω : Σ → Aω

as follows. For every ω-open edge e = (v,w) (oriented forwards) let fω(σ)(e) = σw − σv. Then

(σ,ω) ∈ F if and only if σ belongs to the kernel of fω. Later, we’ll call fω the coboundary map, and

elements of its kernel cocycles.

The following result may be found in [ES88; Gri06, §1.4]. We include the proof in full detail so

as to make the general case (proposition 38) more approachable.

Proposition 1. For every p ∈ (0, 1) and q ∈ {2, 3, 4, . . .}, the probability measure µp,q(σ,ω) is a coupling

of πβ,q and φp,q, where β = − log(1− p) (or, equivalently, p = 1− e−β.)

Proof. The first marginal of µp,q is (omitting the normalizing factor for clarity)

∑
ω∈Ω

µp,q(σ,ω) ∝
∑
ω∈Ω

(1− p)c(ω)po(ω)J(σ,ω) ∈ FK

=
∑
ω∈Ω

(1− p)c(ω)po(ω)
∏

ωe=1
e≡(v,w)∈E

Jσv = σwK

=
∑
ω∈Ω

 ∏
ωe=0

e≡(v,w)∈E

(1− p)


 ∏

ωe=1
e≡(v,w)∈E

pJσv = σwK


=

∏
(v,w)∈E

(
(1− p) + pJσv = σwK

)
(via expansion)

=
∏

(v,w)∈E

(
Jσv = σwK + (1− p)Jσv ̸= σwK

)
= 1|{(v,w)∈E|σv=σw}|(1− p)|{(v,w)∈E|σv ̸=σw}|

= exp

−β
∑

(v,w)∈E

Jσv ̸= σwK


∝ exp

β ∑
(v,w)∈E

Jσv = σwK


∝ πβ,q(σ), σ ∈ Σ.
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Call an open edge or open cluster in ω monochromatic if all its vertices have equal spin in σ. The

second marginal of µp,q is

∑
σ∈Σ

µp,q(σ,ω)

∝ (1− p)c(ω)po(ω)
∑
σ∈Σ

J(σ,ω) ∈ FK

= (1− p)c(ω)po(ω)
∣∣{σ ∈ Σ : eachω-open edge is monochromatic

}∣∣
= (1− p)c(ω)po(ω)

∣∣{σ ∈ Σ : each open cluster inω is monochromatic
}∣∣

= (1− p)c(ω)po(ω)qk(ω) (making k(ω) independent choices from q possible spins)

∝ φp,q(ω), ω ∈ Ω.

The second part of the proof shows that qk(ω) is precisely the number of cocycles, that is,

qk(ω) = |ker fω|. In higher dimensions, we’ll have to replace the factor qk(ω) with a more general

expression (actually, we’ll just write “number of cocycles”; see eq. (6) and proposition 33.)

The conditional measures of µp,q have a simple description. To sample a vertex configuration

conditional on a given edge configuration, assign a spin uniformly and independently to each

cluster. To sample an edge configuration conditional on a given vertex configuration, open each

edge uniformly with probability p wherever two incident vertices have equal spins, and leave all

remaining edges closed. See [Gri06, Figure 1.3] for a graphical illustration of these conditional

sampling procedures. For the proof, see proposition 40.

If q = 2 then the probability that two vertices a and b belong to the same cluster is equal to the

expectation of the function (−1)σb−σa . This last expression has a topological interpretation, which

will extend to the higher-dimensional setting. Consider the unitary character [0] 7→ 1, [1] 7→ −1 of

the group Z/2Z = {[0], [1]}. An edge path connecting a to b has an oriented boundary consisting of

the two points a and b (actually, orientation doesn’t matter when q = 2.) The product of characters

over this oriented boundary is (−1)σb−σa . The general result is theorem 41, where the product of

characters is denoted byWγ. But here’s a simplified proof of the special case, which is essentially

the same result as [Gri06, Theorem 1.16].

Proposition 2. For every p ∈ (0, 1), every pair of vertices a, b ∈ V satisfies3

πβ,2

(
(−1)σb−σa

)
= φp,2(a↔ b),

3The notation πβ,2X indicates the expectation of the random variable Xwith respect to the measure πβ,2.
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where a↔ b is the event that a and b belong to the same open edge cluster, and p = 1− e−β.

Proof. Recall the preceding results about the marginals and conditionals of µp,2. Conditioning on

the edge configuration gives

µp,2
(
(−1)σb−σa

∣∣ω) = µp,2
(
σb = σa

∣∣ω)− µp,2(σb ̸= σa
∣∣ω)

=


1− 0 if a↔ b,

1
2 − 1

2 if a ̸↔ b

= Ja↔ bK, ω ∈ Ω.

The ‘12 ’ is because the conditional measure independently assigns to each open cluster a uniform

spin from Z/2Z, so distinct clusters’ spins are equal with probability 1
2 .

Now take expectations with respect to µp,2 on both sides.

In the Potts lattice gauge theory, elements of Z/qZ are assigned to the edges of the graph (V, E)

instead of to the vertices. For now we’ll consider only q = 2 (the Ising lattice gauge theory.) A

plaquette is a two-dimensional square of side length 1 embedded in Rd, all of whose vertices are

integer lattice points. Let L be the set of all plaquettes in Rd that are included in the box [−n,n]d.

Then, for every plaquette in L, each of its four edges may be identified with an element of E. In

general, we’ll also need to consider the orientation of the edges (section 2.2), but for q = 2 this may

be ignored because −1 ≡ 1 (mod 2).

In the gauge theory we no longer care about the vertex set V , so in place of the graph (V, E)

we’ll work with the hypergraph (E, L). The configuration space for the Ising gauge theory is

Σ := (Z/2Z)E. The configuration space for the associated gauge FK–Ising model isΩ = {0, 1}L: each

plaquette is either closed (0) or open (1). For σ ∈ Σ and Q ∈ L, write σQ := (−1)σe1
+σe2

+σe3
+σe4

where e1, e2, e3, e4 ∈ E are the four edges incident to Q. We’ll say that the configurations σ ∈ Σ

and ω ∈ Ω are compatible if ω(Q) = 1 =⇒ σQ = 1 for every Q ∈ L; that is, each open plaquette

has even edge sum. Again, let F ⊆ Σ × Ω be the set of compatible pairs of configurations, and

define a probability measure on Σ×Ω in precisely the same way as before,

µp,2(σ,ω) =
1

ZES(p, 2)
(1− p)c(ω)po(ω)J(σ,ω) ∈ FK, p ∈ (0, 1).

Computing marginals using the same technique as above, we see that the first marginal of

7



µp,2(σ,ω) is

πβ,2(σ) =
1

ZP(β, 2)
exp

β ∑
Q∈L

JσQ = 1K

 , β ∈ (0,∞), σ ∈ Σ,

where p = 1− e−β as before. The second marginal is

φp,2(ω) =
1

ZFKP(p, 2)
(1− p)c(ω)po(ω)

∣∣{σ ∈ Σ | (σ,ω) ∈ F}
∣∣, Q ∈ (0, 1), ω ∈ Ω.

The conditional measures, too, are analogous to before. To sample ω ∈ Ω conditional on σ ∈ Σ,

for each plaquette Q, if σQ = 1 then let Q be open independently with probability p, and if

σQ = −1 then take Q closed. To sample σ ∈ Σ conditional on ω ∈ Ω, pick uniformly an element

of {σ ∈ Σ | (σ,ω) ∈ F}.

A Wilson loop is a closed walk in the graph (repeated vertices and edges are allowed; also,

we allow the trivial walk with one vertex and no edges.) For a Wilson loop γ of length n ⩾ 0

containing edges (e1, . . . , en), and for edge spin configuration σ ∈ Σ, define the Wilson loop variable

Wγ(σ) := (−1)
∑

i σei . According to theorem 41, the Wilson loop expectation πβ,2Wγ coincides

with the probability, with respect to φp,2, that γ is a boundary of some homological surface

consisting of open plaquettes (here q = 2 so a “homological surface” is simply a set of plaquettes;

more generally we consider 2-chains over Z/qZ as defined in section 2.2.) Note the analogy to the

eventa↔ b from before: a path joiningawith b is a one-dimensional surface with boundary {a, b}.

A “Wilson loop” in the classical (non-gauge) Ising model is therefore simply a pair of vertices.

For a thorough introduction to the random-cluster model, see the textbook [Gri06]. For an

overview of the Ising and Potts model, see the lecture notes [Dum20]. We’ve taken V to be a

fixed-size finite box in the hypercubic lattice, but the essential question is the behavior of Wilson

loop expectations (and other observables) in the infinite-volume limit. More on this in section 5.
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2 Preliminaries

We review some prerequisites in algebra and topology. References are listed at the end of each

subsection.

2.1 Finite abelian groups and their duals

The results in this section are elementary, but some of them are hard to find in the literature. For

that reason, they were derived as needed, though of course no claim of originality is made.

Let G be a finite abelian group. A character of G is a homomorphism from G into the circle

group T = {z ∈ C | |z| = 1}. The dual Ĝ of G, also denoted by Ĝ, is the set of all characters of G

endowed with pointwise group operation (χ + ψ)(g) := χ(g)ψ(g). Note well that the sum of two

characters is their pointwise product (see the discussion on page 40 about conventions.) It can be

shown (by invoking the structure theorem for finite abelian groups) that G ∼= Ĝ. The natural (or

canonical) map η : G→ ̂̂
G, g 7→ (χ 7→ χ(g)) is an isomorphism of Gwith its bidual ̂̂G.

The situation is similar to that of a finite-dimensional vector space V : The algebraic bidual V∗∗

is naturally isomorphic to V . In fact, if we take G = (Z/pZ)d for prime p and any d ⩾ 0, then

the dual of G as a vector space over the field Z/pZ is precisely its dual as a finite abelian group,

and the notions of natural isomorphism also coincide. This is because every character χ : G → T

satisfies, for every g ∈ G, the identity 1 = χ(0) = χ(pg) = χ(g)p, so every element of im(χ) is a pth

root of unity. Identify the group of pth roots of unity with the additive group Z/pZ. Conveniently,

scalar multiplication in the vector space (Z/pZ)d by elements of the field Z/pZ is merely repeated

addition, so the character χ is a linear functional. And, conversely, every linear functional is a

character.

Now back to the general case. Let A and B be finite abelian groups, and let α : A → B be a

homomorphism. Its dual map α∗ : B̂→ Â, χ 7→ χ ◦α is a homomorphism of the dual groups. Note

that (α ◦ β)∗ = β∗ ◦ α∗ for any two composable homomorphisms α and β. The operation sending

α to its bidual map α∗∗ := (α∗)∗ :
̂̂
A → ̂̂

B is compatible with the natural maps ηA : A → ̂̂
A and

ηB : B→ ̂̂
B in the sense that

α∗∗ ◦ ηA = ηB ◦ α, (1)
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because

(α∗∗ ◦ ηA)(g)(χ) = (α∗∗(ηA(g)))(χ) = (ηA(g) ◦ α∗)(χ) = ηA(g)(χ ◦ α)

= χ(α(g)) = ηB(α(g))(χ) = (ηB ◦ α)(g)(χ) for every g ∈ A and χ ∈ B̂.

Equation (1) is essentially what justifies the term natural map.

The annihilator AnnG S of a set S ⊆ G is the set of all characters that kill S:

AnnG S :=
{
χ ∈ Ĝ | χ(s) = 1 for every s ∈ S

}
.

Evidently, the annihilator is always a subgroup of Ĝ. We will often drop the subscript and write

simply AnnSwhen the group G is clear from context.

Let H be a subgroup of G. The restriction to H of any character of G is a character of H. On the

other hand, every character χ ofH can be extended to a character ofG (for a proof via recursion on

the index of H, see [Pey20, §1.2.1, Lemma 1].) The restriction map ρ : Ĝ↠ Ĥ is a homomorphism,

as is the inflation map τ : Ĝ/H → Ĝ, χ 7→ (g 7→ χ(gH)). It’s straightforward to show that the

sequence

{1} → Ĝ/H
τ
↪→ Ĝ

ρ
↠ Ĥ→ {1} (2)

is exact [Pey20, §1.2.1, Lemma 2]. We collect a few consequences for future reference.

Fact 3. LetA and B be finite abelian groups, and let α : A→ B be a homomorphism. If α is surjective, then

α∗ is injective. If α is injective, then α∗ is surjective.

Proof. If α is surjective, then clearly the two maps α∗(χ1) = χ1 ◦ α ∈ B̂ and α∗(χ2) = χ2 ◦ α ∈ B̂

are distinct whenever the maps χ1, χ2 ∈ Â are distinct.

Now assume that α is injective and let ψ ∈ Â. Let H = imα and define the character

ψ ′ : H→ T, α(a) 7→ ψ(a). Let χ be any character ofG that extendsψ ′. Thenα∗(χ) = χ◦α = ψ.

Fact 4. Let G be a finite abelian group, and H a subgroup of G. Every character of H can be extended to a

character of G in |G|/|H| distinct ways. This holds in particular for the trivial character, i.e, |AnnGH | =

|G|/|H|.

Proof. From eq. (2) we see |ker(ρ)| = | im(τ)| =
∣∣∣Ĝ/H∣∣∣ = |G/H| = |G|/|H|. Since the restriction ρ is a

surjective homomorphism, by the first isomorphism theorem all its fibers have equal size |G|/|H|:
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That is, every element of Ĥ can be extended to an element of Ĝ in |G|/|H| ways. In particular,

AnnGH = ker(ρ), so |AnnGH | = |G|/|H|.

Fact 5. For every subgroup H of a finite abelian group G,

η(H) = Ann(AnnH),

where η : G→ ̂̂
G is the natural map.

Proof. Appling fact 4 with Ĝ in place of G and with AnnGH in place of H gives

|Ann
Ĝ
(AnnGH) | =

|Ĝ|

|AnnGH|
=

|Ĝ|

|G|/|H|
= |H| = |η(H)|.

But every set S ⊆ G satisfies η(S) ⊆ Ann(AnnS), so η(H) = Ann(AnnH).

Fact 6. LetG be a finite abelian group. The map Ann : G→ Ĝ induces a bĳection from the set of subgroups

of G to the set of subgroups of Ĝ. Moreover, for subgroups A,B of G,

Ann(A ∩ B) = AnnA+ AnnB and

Ann(A+ B) = AnnA ∩ AnnB.

Proof. Let SubG denote the family of subgroups of G, ordered by inclusion. By fact 5, the map

Ann : SubG→ Sub Ĝ is injective and the map Ann : Sub Ĝ→ Sub ̂̂G is surjective. But G ∼= Ĝ and

thus SubG ∼= Sub Ĝ. Therefore, Ann : SubG→ Sub Ĝ is bĳective. It is order-reversing in the sense

thatC ⊆ D =⇒ AnnC ⊇ AnnD for everyC,D ∈ SubG. Likewise, the map Ann : Sub Ĝ→ Sub ̂̂G
is order-reversing, so by fact 5 AnnC ⊇ AnnD =⇒ C ⊆ D for every C,D ∈ SubG. Thus, Ann is

an order anti-isomorphism4 between the partially ordered sets SubG and Sub Ĝ.

Every pair of subgroups A,B ∈ SubG has greatest lower bound A ∩ B and least upper bound

A + B (i.e., (SubG, +, ∩) is a lattice), and likewise for Sub Ĝ. Any order anti-isomorphism sends

greatest lower bounds to least upper bounds, and sends least upper bounds to greatest lower

bounds, as can be seen by unrolling the definitions.

As a side note, without proof: the pair of maps Ann : P(G) → P(Ĝ) and Ann : P(Ĝ) → P(
̂̂
G)

form an antitone Galois connection between the powerset lattices (after identifying G with ̂̂G),

4An anti-isomorphism between partial orders P andQ is a bĳection α : P → Q such that p1 ⩽ p2 ⇐⇒ α(p1) ⩾ α(p2).
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whose Galois closed elements are the subgroups.

The following result will be used in the proof of proposition 59.

Fact 7. Let A and B be finite abelian groups, and let α : A→ B be a homomorphism. Then

(α∗)−1 ◦ AnnA = AnnB ◦α and

α∗ ◦ (α∗)−1 ◦ AnnA ◦α−1 = α∗ ◦ AnnB,

where α, α∗, α−1, and (α∗)−1 denote the respective induced maps between powersets (e.g., α∗ : P(B̂) →

P(Â).)

If α∗ is surjective, then

AnnA ◦α−1 = α∗ ◦ AnnB .

Proof. For every subset S ⊆ A,

(
(α∗)−1 ◦ AnnA

)
(S) =

{
χ ∈ B̂ | α∗(χ) ∈ AnnA S}

=
{
χ ∈ B̂ | χ ◦ α ∈ AnnA S}

=
{
χ ∈ B̂ | χ ∈ AnnB α(S)}

= (AnnB ◦α)(S).

This proves the first identity. To prove the second identity from the first, compose each side with

α∗ on the left and α−1 on the right to get

α∗ ◦ (α∗)−1 ◦ AnnA ◦α−1 = α∗ ◦ AnnB ◦α ◦ α−1.

The right-hand side here is equal to α∗ ◦ AnnB because, for every T ⊆ B,

α∗(AnnB(α(α
−1(T)))) = α∗(AnnB(T ∩ imα))

= α∗(AnnB T + AnnB(imα))

= α∗(AnnB T) + α
∗(AnnB(imα))

= α∗(AnnB T) + {χ ◦ α | χ ∈ AnnB(imα)}

= α∗(AnnB T) + {0}

= α∗(AnnB T).

12



This proves the second identity. Finally, if α∗ is surjective, then α∗ ◦ (α∗)−1 is the identity on

P(Â).

Fact 8. For every homomorphism α of finite abelian groups,


Ann(imα) = ker(α∗) and

Ann(kerα) = im(α∗).

Proof. Let A and B be finite abelian groups, and let α : A→ B be a homomorphism. Then

Ann(imα) = {χ ∈ B̂ | χ(b) = 0 for each b ∈ imα}

= {χ ∈ B̂ | χ ◦ α = 0} = ker(α∗), and

Ann(kerα∗) = Ann(Ann(imα)) = ηB(imα)

= im(α∗∗ ◦ ηB) = im(α∗∗).

It’s not hard to see that every homomorphism has a predual (because the map α 7→ α∗ is a bĳection

from hom(A,B) to hom(B̂, Â).) Thus, we may replaceα∗ withα to obtain Ann(kerα) = im(α∗).

Recall the structure theorem for finite abelian groups [Pey20, §1.2.2]; [Rom12, Theorem 5.8],

which states that there exists a direct sum decomposition

G ∼=
⊕

1⩽i⩽n

Z/qiZ

where n ⩾ 0 and q1, . . . , qn ⩾ 2. By the Chinese remainder theorem, it’s possible to arrange for

each qi to be a prime power.

Definition 9. Given a direct sum of groups G =
⊕

i∈IGi or a direct product of groups G =⊗
i∈IGi,5 the coordinate projections are the maps ρj : G → Gj, (gi)i∈I 7→ gj, and the coordinate

injections are the maps κj : Gj → G, gj 7→ (gj for i = j, 0 for i ̸= j)i∈I.

Letϖj := κj ◦ ρj : G→ G. (The mapϖj sets to 0 all coordinates except the jth.)

Wherever it’s necessary to be explicit about the group, we’ll instead write ρG,j, κG,j,ϖG,j. △

Let k ⩾ 1 and take ζk = e2πi/k. It’s easy to show that there is an isomorphism Z/kZ ∼= Ẑ/kZ

given by g 7→ (h 7→ ζ
hg
k ), wherehg is the product of natural numbersh, g [CST18, p. 50]. Moreover,

5Recall that the direct product is the set of all tuples whereas the direct sum is the set of all finitely-supported tuples,
both with componentwise group operation [Rom12, p. 152].
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each character χ of a direct sum
⊕

1⩽i⩽nGi is specified uniquely by the characters χ ◦ κi of the

components, and this identification gives an isomorphism

⊕̂
1⩽i⩽n

Gi
∼=

⊕
1⩽i⩽n

Ĝi.

Combining this with the structure theorem proves that G ∼= Ĝ holds for every finite abelian group

G: If G comes with a specified decomposition into cyclic groups, and a generator is specified for

each of those cyclic groups, then there’s a corresponding isomorphism G ∼= Ĝ via “components”6

(g1, . . . , gn) 7→
(
(h1, . . . , hn) 7→ ζ

h1g1

k1
· · · ζhngn

in

)
. (3)

Let G1, . . . , Gn and H1, . . . , Hn be finite abelian groups and let αi : Gi → Hi be a homomorphism

for each i = 1, . . . , n. Define their direct sum α =
⊕

i αi :
⊕

iGi →
⊕

iHi as

 ⊕
1⩽i⩽n

αi

 (g1, . . . , gn) = (α1(g1), . . . , αn(gn)).

Then we may take the dual α∗ :
⊕̂

iHi →
⊕̂

iGi “componentwise” as

 ⊕
1⩽i⩽n

αi

∗ =
⊕

1⩽i⩽n

αi
∗

(the equality is to be interpreted in the sense of our componentwise identifications
⊕̂
Gi

∼=
⊕
Ĝi,⊕̂

Hi
∼=
⊕
Ĥi.) For example, if Gi = Hi and if each αi : Gi → Gi is either the zero map or the

identity map, then the same is true of the dual (
⊕

i αi)
∗ :
⊕̂

iGi →
⊕̂

iGi. In other words, if⊕
i αi may be expressed as a projection onto some subset of coordinates followed by an injection

back into
⊕

iGi, then the same holds for (
⊕

i αi)
∗. This will be useful in section 4, so we’ll present

two cases formally as facts 10 and 11.

Fact 10. Let G = G1 ⊕ · · · ⊕Gn (where n ⩾ 1) for finite abelian groups G, G1, . . . , Gn. Identify Ĝ with

6It’s often pointed out that this isomorphism is non-canonical, and that is indeed the case if we work in the unadorned
category of groups. But it is natural in the category of finite abelian groups decorated with decompositions into cyclic
subgroups and with specified generators for each cyclic component (also, the isomorphism gives special status to the
first primitive qth root of unity for each q.) Unfortunately, the covariant functor involved with this natural isomorphism
is uninteresting, and instead we care about the contravariant functor sending a morphism α to its dual α∗. This is why
it’s conceptually cleaner to keep separate the two notions of a group and its dual: They are different objects because they
play a role in different operations. This will be made more clear in section 2.2, where α and α∗ will be the boundary
and coboundary map, respectively.
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Ĝ1 ⊕ · · · ⊕ Ĝn as above (that is, a character χ ∈ Ĝ is identified with (χ1, . . . , χn) ∈ Ĝn ⊕ · · · ⊕ Ĝn where

χ((g1, . . . , gn)) = χ1(g1)χ2(g2) · · ·χn(gn).)

For every j = 1, . . . , n, the dual maps of the coordinate projection ρG,j : G → Gj and the coordinate

injection κG,j : Gj → G are the coordinate injection κ
Ĝ,j

: Ĝj → Ĝ and the coordinate projection

ρ
Ĝ,j

: Ĝ→ Ĝj, respectively.

Proof. For readability, we prove the result for n = 2 (the proof extends in the obvious way to

arbitrary n.)

For all gi ∈ Gi and χi ∈ Ĝi (where i = 1, 2),

(
ρ∗G,1(χ1)

)
(g1, g2) = χ1

(
ρG,1(g1, g2)

)
= χ1(g1)

= (χ1, 0)(g1, g2),

which proves ρ∗G,1 = κ
Ĝ,1

, and

κ∗G,1

(
(χ1, χ2)

)
(g1) = (χ1, χ2)(κG,1(g1))

= (χ1, χ2)(g1, 0)

= χ1(g1),

which proves κ∗G,1 = ρ
Ĝ,1

.

Fact 11. Let G = G1 ⊕ · · · ⊕Gn (where n ⩾ 1) for finite abelian groups G, G1, . . . , Gn. Identify Ĝ with

Ĝ1 ⊕ · · · ⊕ Ĝn as above (that is, a character χ ∈ Ĝ is identified with (χ1, . . . , χn) ∈ Ĝn ⊕ · · · ⊕ Ĝn where

χ((g1, . . . , gn)) = χ1(g1)χ2(g2) · · ·χn(gn).)

The duality relationϖ∗
G,j = ϖĜ,j

holds for every j = 1, . . . , n (see definition 9.)

Proof. By fact 10, the compositionϖG,j = κG,j ◦ρG,j has dualϖ∗
G,j = (κG,j ◦ρG,j)

∗ = ρ∗G,j ◦κ∗G,j =

κ
Ĝ,j

◦ ρ
Ĝ,j

= ϖ
Ĝ,j

.

The Fourier transform [CST18, §2.4] of a function f : G → C (for a finite abelian group G) is the

function f̂ : Ĝ→ C (also denoted F{f}) defined as

f̂(χ) ≡ F{f}(χ) =
∑
g∈G

f(g)χ(g), χ ∈ Ĝ. (4)
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Recall that the characters are linearly independent over C; in fact, any two distinct characters

are orthogonal with respect to the standard inner product ⟨f1, f2⟩ =
∑

g∈G f1(g)f2(g) [CST18,

§2.3]. The characters form a basis for the C-vector space CG: Every function f : G → C may be

expressed as a linear combination of characters using the Fourier inversion formula [CST18, §2.4]

f =
1

|G|

∑
χ∈Ĝ

f̂(χ)χ.

In particular, the Fourier transform F : CG → CĜ, f 7→ f̂ is an isomorphism (between vector spaces

over C.)

Next, we derive a simple result that will be used to prove theorem 41.

Fact 12. Let G be a finite abelian group and H a subgroup. Then

1

|AnnH |

∑
χ∈AnnH

χ(g) = Jg ∈ HK, g ∈ G.

Proof. Consider the homomorphism eg : AnnH → C, χ 7→ χ(g) and its fibers e−1
g (z), z ∈ C.

By the first homomorphism theorem for groups, all nonempty fibers have equal cardinality. The

image of eg is a finite subgroup of the circle group T ⊆ C, so either it coincides with {1} or is

rotationally symmetric about 0. These two cases are distinguished by g ∈ H because of fact 5 (we

have η(g) = eg ∈ Ann AnnH if and only if g ∈ H.)

Fact 12 is equivalent to the Poisson summation formula—which we won’t need directly, but

include anyway for its aesthetic value. This formula may be found in [Ter99, p. 199] and [CST18,

p. 60].

Fact 13 (Poisson summation formula). Let G be a finite abelian group and H a subgroup. For every

function f : G→ C, the averages over the cosets of H are

1

|H|

∑
h∈H

f(gh) =
1

|G|

∑
χ∈AnnH

f̂(χ)χ(g), g ∈ G.

Proof. For every h ∈ H, the Fourier transform (eq. (4)) of the function g 7→ f(gh), evaluated at a
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character ψ ∈ Ĝ, is

F {g 7→ f(gh)} (ψ) =
∑
g∈G

f(gh)ψ(g)

=
∑
g∈G

f(g)ψ(gh−1) (by change of variables g := gh)

= ψ(h)
∑
g∈G

f(g)ψ(g)

= ψ(h)f̂(ψ).

Accordingly, the Fourier transform of the left-hand side of the Poisson summation formula, as a

function of g, is

ψ 7→ f̂(ψ)

|H|

∑
h∈H

ψ(h), ψ ∈ Ĝ.

The right-hand side of the Poisson summation formula has Fourier transform

ψ 7→ 1

|G|

∑
χ∈AnnH

f̂(χ)⟨χ,ψ⟩

=
1

|G|
Jψ ∈ AnnHK f̂(ψ)|G|

= Jψ ∈ AnnHK f̂(ψ), ψ ∈ Ĝ.

So the Fourier transforms of the two sides coincide if and only if

1

|H|

∑
h∈H

ψ(h) = Jψ ∈ AnnHK, ψ ∈ Ĝ.

But this follows by duality (fact 5) from fact 12 by taking Ĝ in place of G and AnnH in place of

H.

To justify the earlier statement that fact 12 and fact 13 are equivalent, here is a proof in the other

direction, too.

Proof of fact 12 from fact 13. Let f be the indicator of the identity, f(g) = Jg = 0K. Then f̂ ≡ 1. The

Poisson summation formula (fact 13) gives

1

|H|

∑
h∈H

Jg = h−1K =
1

|G|

∑
χ∈AnnH

χ(g).
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The sum on the left-hand side vanishes if g ̸∈ H and evaluates to 1 if g ∈ H, so this formula reduces

to

Jg ∈ HK =
1

|G|/|H|

∑
χ∈AnnH

χ(g).

Now put |AnnH | = |G|/|H| (fact 4.)

The following is an unrelated inequality that we’ll use to prove theorems 35 and 62.

Fact 14. Let G and G ′ be finite abelian groups and let α : G → G ′ be a homomorphism. Let A and B be

subgroups of G, and let D be a subgroup of G ′. Then

∣∣α(A+ B) +D
∣∣ ∣∣α(A ∩ B) +D

∣∣ ⩽
∣∣α(A) +D∣∣ ∣∣α(B) +D∣∣.

In particular, ∣∣α(A+ B)
∣∣ ∣∣α(A ∩ B)

∣∣ ⩽
∣∣α(A)∣∣ ∣∣α(B)∣∣.

Proof. The special case follows from the general case by puttingD = {0}. But for clarity we’ll prove

the special case first, and extend to the general case by passing to the quotient G ′/D.

The map α satisfies

α(A+ B) = α(A) + α(B) and α(A ∩ B) ⊆ α(A) ∩ α(B).

For any two subgroups K, N ⊆ G ′ the second isomorphism theorem states (K+N)/N ∼= K/(K∩N)

and therefore |K +N| |K ∩N| = |K| |N|. Taking K = α(A) and N = α(B), and combining with the

preceding identity and inclusion, gives

∣∣α(A+ B)
∣∣ ∣∣α(A ∩ B)

∣∣ ⩽
∣∣α(A) + α(B)∣∣ ∣∣α(A) ∩ α(B)∣∣

=
∣∣α(A)∣∣ ∣∣α(B)∣∣.

This proves the special case D = {0}.

Now let α = π ◦ α : G→ G ′/Dwhere π : G ′ → G ′/D, g ′ 7→ g ′ +D. For every subset S ⊆ G,

1

|D|

∣∣α(S) +D∣∣ = ∣∣α(S)∣∣.
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Put α in place of α to get
∣∣α(A+ B)

∣∣ ∣∣α(A ∩ B)
∣∣ ⩽ ∣∣α(A)∣∣ ∣∣α(B)∣∣, that is,

1

|D|

∣∣α(A+ B) +D
∣∣ 1
|D|

∣∣α(A ∩ B) +D
∣∣ ⩽

1

|D|

∣∣α(A) +D∣∣ 1
|D|

∣∣α(B) +D∣∣.
Multiplying through by |D|2 completes the proof.

Finally, although so far we have been discussing finite groups only, we will need two definitions

and a result about infinite direct products and direct sums for section 5.

Definition 15. Let G be a finite abelian group and I a set (not necessarily finite.) We will write

GI :=
⊗
i∈I

G = {f : I → G} and

G(I) :=
⊕
i∈I

G = {f : I → G | f(e) = 0 for all but finitely many i ∈ I},

(The former is the direct product and the latter is the direct sum. Recall that they are both abelian

groups with componentwise group operation, (f+ f ′)(i) = f(i) + f ′(i) for i ∈ I.) △

For infinite abelian groups, the definitions of character and dual group are unchanged from

before. But in general it’s no longer the case that G ∼= Ĝ for infinite G. However, we will have use

for the following result, which may be compared to the discussion on page 13 about the finite case.

Fact 16. Let G be a finite abelian group, and let I be a set (not necessarily finite.) There is a group

isomorphism

ψ : Ĝ(I) → ĜI, χ 7→ (i 7→ χi)

where

χi : G→ C, g 7→ χ(κi(g)),

κi(g) : I 7→ G, j 7→


g, i = j;

0, i ̸= j.
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Proof. To check that ψ is a group homomorphism, we verify

ψ(χ− χ ′) = (i 7→ (χ− χ ′)i)

=
(
i 7→ (g 7→ (χ− χ ′)(κi(g)))

)
=
(
i 7→ (g 7→ χ(κi(g))χ

′(κi(g))
−1
)

=
(
i 7→ (g 7→ χi(g)χ

′
i(g)

−1)
)

=
(
i 7→ (χi − χ

′
i)
)

= (i 7→ χi) − (i 7→ χ ′
i)

= ψ(χ) −ψ(χ ′).

To check that ψ is a bĳection, we claim that it has inverse

ψ−1 : ĜI → Ĝ(I), (ζi)i∈I 7→

(
(gi)i∈I 7→

∏
i∈I

ζi(gi)

)
,

where the sum is finite because the element (gi)i∈I ∈ G(I) has finite support. We verify

(ψ ◦ψ−1)
(
(ζi)i∈I

)
= ψ

(
(gi)i∈I 7→

∏
i∈I

ζi(gi)

)

= i 7→

(
g 7→

(
(gi)i∈I 7→

∏
i∈I

ζi(gi)

)
(κi(g))

)

= i 7→ (g 7→ ζi(g))

= (ζi)i∈I, (ζi)i∈I ∈ ĜI

and

(ψ−1 ◦ψ)(χ) = ψ−1(i 7→ χi)

=

(
(gi)i∈I 7→

∏
i∈I

χi(gi)

)

=

(
(gi)i∈I 7→

∏
i∈I

χ(κi(gi))

)

= ((gi)i∈I 7→ χ ((gi)i∈I)) (because χ is a homomorphism)

= χ, χ ∈ Ĝ(I).
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Throughout, we deal only with abelian groups. Non-abelian groups are more challenging. It

becomes necessary to keep track of higher-dimension representations, because there aren’t enough

characters. In general, for a finite group G, its group of characters Ĝ is isomorphic to G/[G,G],

where [G,G] is the commutator subgroup [Pey20, §1.3.2].

For a more thorough introduction to these ideas, refer to [CST18, Chapter 1], [Pey20, Chapters

1, 2], and [Ter99, Part I].

2.2 Cubical homology

We describe the homology theory of certain subsets of Rd called “cubical sets”. This is essentially

a special case of simplicial homology, where the simplicial complexes comprise axis-aligned cubes

in Rd.

We adopt the formalism of computational homology. This is for pragmatic and aesthetic

reasons. First, homology has numerous practical applications to data analysis [PR15], and as a

result there are many software packages available for computing homology groups and related

invariants. It will be easier to set up simulations later if we don’t have to translate between different

conventions. Second, the notation is conceptually crisp, in that it can be quickly defined in full

rigor without any knowledge of differential forms. This makes it (perhaps) more accessible to

probability theorists.

A competing formalism, the discrete exterior calculus, is ubiquitous in the existing literature

on lattice gauge theory. It might be said to enjoy the benefit of greater geometrical clarity—for

instance, the idea of orientation is made explicit. Readers familiar with the exterior calculus of

differential forms may wish to browse the “dictionary”, table 2. It should be stressed that there is

no fundamental mathematical difference between the two formalisms.

Let G be an abelian group (not necessarily finite), and fix an integer dimension d ⩾ 1.

An elementary cube of dimension k ⩾ 0 (or a k-cube) is a unit cube [0, 1]k embedded in Rd with

vertices lying on the integer lattice Zd. In other words, an elementary cube is a cartesian product

Q = I1×· · ·×Id where for each 1 ⩽ i ⩽ d either Ii = [ni, ni+1] or Ii = {ni} for someni ∈ Z, and its

dimension dimQ is the dimension of its affine hull or, equivalently, the number of non-degenerate

factors in the cartesian product (here degenerate means a singleton, {ni}.) For elementary cubes

Q ′ and Q, we say that Q ′ is a face of Q if Q ′ ⊆ Q, and a primary face or facet if it is a face with

dimQ ′ = dimQ− 1.

The elementary cell
◦
Q associated with an elementary cube Q is the relative interior of Q (i.e.,
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the interior of Q considered as a subset of its affine hull). It’s geometrically intuitive that every

elementary cube is the disjoint union of the relative interiors of its faces (this can be proved by

induction on the dimension of the elementary cube, and holds more generally for all convex

polytopes [Zie94, p. 61].)

Although we’ve defined elementary cubes as subsets of Rd, we’ll employ them only as combi-

natorial elements—what’s relevant is only their dimensions and inclusions between them.

The collection of all elementary cubes is denoted by K; the collection of all elementary cubes

of dimension k ∈ Z is denoted by Kk. Thus, K =
⋃
· dk=0Kk, and Kk = ∅ for k < 0 and k > d.

A cubical set is a subset X ⊆ Rd that can be expressed as a finite (possibly empty) union

of elementary cubes, not necessarily all of the same dimension. For a cubical set X we define

Kk(X) := {Q ∈ Kk | Q ⊆ X} and K(X) := {Q ∈ K | Q ⊆ X}. The collection of all elementary cubes

in X together with their inclusions and dimensions,
(
K(X), ⊆, dim

)
, is called the cubical complex

associated with X.

As an example, consider the cubical set X = [0, 1]d ⊆ Rd. Then Kd(X) = {[0, 1]d} and K0(X)

consists of 2d singletons (the vertices of X.) It’s straightforward to show that
∣∣Kk(X)

∣∣ = (dk)2d−k

for 0 ⩽ k ⩽ d.

Note that every (k− 1)-cube (i.e., elementary cube of dimension k− 1) is a face of some k-cube,

that is,
⋃
Kk−1 ⊆

⋃
Kk for 1 ⩽ k ⩽ d, but it is not the case that

⋃
Kk−1(X) ⊆

⋃
Kk(X) holds for

every cubical set X (for example, if X is the singleton {0} then
⋃
K0(X) = {0} ̸⊆ ∅ =

⋃
K1(X).)

If X is a cubical set with Kk(X) = ∅ for all k ⩾ 2, then the cubical complex K(X) may be viewed

as a finite graph G = (V, E) =
(
K0(X),K1(X)

)
embedded in Rd.

A (cubical) chain of dimension k ∈ Z (or simply a k-chain) with coefficients in G is a finitely-

supported map Kk → G. More formally, define Ck(G) to be the direct sum
⊕

Kk
G; the elements

of Ck(G) are called k-chains. For a chain c ∈ Ck(G) and for Q ∈ Kk, the group element c(Q) ∈ G

is called the coefficient of Q in c.

Now fix some cubical set X ⊆ Rd. For every k ∈ Z we define Ck(X,G) :=
⊕

Kk(X)G. An

element c ∈ Ck(X,G) will be called a k-chain in X. So a k-chain in X is an assignment of an element

of G to each k-cube in X. In particular, Ck(X,G) is the trivial group whenever k < 0 or k > d. We

identify Ck(X,G) with a subgroup of Ck(G) in the obvious way, by putting coefficient 0 on every

k-cube outside X.
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If Q ∈ Kk(X) and g ∈ G, then gQ will denote the k-chain

gQ(P) :=


g, Q = P;

0, Q ̸= P.

In particular, ifG is the additive group of a ring with additive identity 0 and multiplicative identity

1, then the element 1Q ∈ Ck(X,G) is the indicator of Q.

Next, we define a boundary operator, which sends a k-chain to a (k − 1)-chain. For a k-cube

Q ∈ Kk and for g ∈ G, the following definition specifies the boundary of gQ to be a chain

supported on the facets of Q whose nonzero coefficients have values ±g, with opposing signs on

each pair of opposing facets, and extended by additivity to all ofCk(G). To make this precise, write

Q = I1×· · ·× Id ⊆ Rd where each factor Ij is either degenerate (a singleton) or a unit interval, and

label the nondegenerate factors as Ii1 , . . . , Iik with i1 < . . . < ik, assuming for now that 1 ⩽ k ⩽ d.

For 1 ⩽ j ⩽ k, denote the jth pair of facets of Q as

Q−
j := I1 × · · · × Iij−1 × {mj}× Iij+1 × · · · × Id,

Q+
j := I1 × · · · × Iij−1 × {mj + 1}× Iij+1 × · · · × Id where Iij = [mj,mj + 1].

For 1 ⩽ k ⩽ d, the boundary operator ∂k : Ck(G) → Ck−1(G) is

∂kgQ :=
∑

1⩽j⩽k

(−1)j−1
(
gQ+

j
− gQ−

j

)
,

extended by additivity to all of Ck(G). Note that each elementary cube comes with an ordering

on its coordinates, and the boundary operator depends on this ordering: some of the signs of the

boundary will change if coordinates are permuted, because of the (−1)j−1 factor. This defines

∂k : Ck(G) → Ck−1(G) for 1 ⩽ k ⩽ d. Observe that the operators ∂k are group homomorphisms.

For k ⩽ 0 and k > d, define ∂k : Ck(G) → Ck−1(G) to be the zero homomorphism (this is the only

option because Ck(G) is trivial for k < 0 and k > d.) An alternative definition for ∂k is given in

[KMM04], where the definition above is listed instead as a result [KMM04, Proposition 2.36].

We also define ∂k : Ck(X,G) → Ck−1(X,G) to be the restriction of ∂k to Ck(X,G). To keep

the notation compact, we’ll avoid indicating the domain explicitly (by writing something like

∂k(X,G).) The domain for ∂k will always be clear from context. Furthermore, in most contexts it

won’t cause confusion to write ∂ in place of ∂k.
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A helpful special case to consider is G = Z/2Z, where +1 = −1 so all signs on coefficients

may be ignored. For more general G, negating a coefficient on an elementary cube may be

thought of as reversing the orientation of the cube (though we do not explicitly define orientation.)

The alternating-sign convention in the definition of ∂k is arranged for the sake of the following

boundary-of-boundary result (fact 17). This result is essential to every homology theory. There is a

proof by induction on d in [KMM04, Proposition 2.37], which is written for G = Z but carries over

to the general case with only trivial modifications. The proof presented below is much simpler.7

Fact 17 (Boundary relation). For every k ∈ Z,

∂k−1 ◦ ∂k = 0.

Proof. For k ⩽ 1 and k > d the result is trivial, so assume 2 ⩽ k ⩽ d. WithQ as in the definition of

∂k, for 1 ⩽ j < ℓ ⩽ k let

Q−−
j,ℓ = I1 × · · · × Iij−1 × {mj}× Iij+1 × · · · · · · × Iiℓ−1 × {mℓ}× Iiℓ+1 × · · · × Id,

Q−+
j,ℓ := I1 × · · · × Iij−1 × {mj}× Iij+1 × · · · · · · × Iiℓ−1 × {mℓ + 1}× Iiℓ+1 × · · · × Id,

Q+−
j,ℓ := I1 × · · · × Iij−1 × {mj + 1}× Iij+1 × · · · · · · × Iiℓ−1 × {mℓ}× Iiℓ+1 × · · · × Id,

Q++
j,ℓ := I1 × · · · × Iij−1 × {mj + 1}× Iij+1 × · · · · · · × Iiℓ−1 × {mℓ + 1}× Iiℓ+1 × · · · × Id,

where Iij = [mj,mj + 1] and Iiℓ = [mℓ,mℓ + 1]. Applying the definition of the boundary operator

twice shows

(∂k−1 ◦ ∂k)(gQ) :=
∑

1⩽j ′<j⩽k

(−1)j−1(−1)j
′−1
(
gQ++

j ′,j
− gQ−+

j ′,j
− gQ+−

j ′,j
+ gQ−−

j ′,j

)
+

∑
1⩽j⩽j ′<k

(−1)j−1(−1)j
′−1
(
gQ++

j,j ′+1
− gQ+−

j,j ′+1
− gQ−+

j,j ′+1
+ gQ−−

j,j ′+1

)
=

∑
1⩽j ′<j⩽k

(−1)j−1(−1)j
′−1
(
gQ++

j ′,j
− gQ−+

j ′,j
− gQ+−

j ′,j
+ gQ−−

j ′,j

)
+

∑
1⩽j<j ′′⩽k

(−1)j−1(−1)j
′′−2

(
gQ++

j,j ′′
− gQ+−

j,j ′′
− gQ−+

j,j ′′
+ gQ−−

j,j ′′

)
= 0.

Example 18. Let Q be a 2-cube (a plaquette). Then ∂2gQ is supported on its four edges. The signs

7Thank you to Anthony Quas for pointing out this “two-line proof”.
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on the opposing sides of the plaquette may be thought of as orientations for the edges. If the edges

are visualized as directed arrows, then the four arrows all sit head-to-tail. The boundary of each

edge is supported on its endpoints, and the net contribution to each of the four vertices is 0.

More explicitly, let d = 2 and Q = [0, 1]× [0, 1] ⊆ R2. In the notation above, I1 = I2 = [0, 1] so

i1 = 1 and i2 = 2. We have

Q−
1 = {0}× [0, 1], Q−

2 = [0, 1]× {0},

Q+
1 = {1}× [0, 1], Q+

2 = [0, 1]× {1}.

So for every g ∈ G

∂2gQ = gQ+
1
− gQ−

1
− gQ+

2
+ gQ−

2
.

Now consider Q−
1 = {0}× [0, 1]; this has one nondegenerate interval, i1 = 2. So (and similarly for

the other three 1-cubes)

(Q−
1 )

−
1 = {0}× {0}, (Q−

2 )
−
1 = {0}× {0},

(Q−
1 )

+
1 = {0}× {1}, (Q−

2 )
+
1 = {1}× {0},

(Q+
1 )

−
1 = {1}× {0}, (Q+

2 )
−
1 = {0}× {1},

(Q+
1 )

+
1 = {1}× {1}, (Q+

2 )
+
1 = {1}× {1}.

Therefore, writing (i, j) := {i}× {j} as shorthand,

∂1(∂2gQ) = ∂1gQ+
1
− ∂1gQ−

1
− ∂1gQ+

2
+ ∂1gQ−

2

= (g(Q+
1 )+1

− g(Q+
1 )−1

) − (g(Q−
1 )+1

− g(Q−
1 )−1

) − (g(Q+
2 )+1 −(Q+

2 )−1
) + (g(Q−

2 )+1
− g(Q−

2 )−1
)

= (g(1,1) − g(1,0)) − (g(0,1) − g(0,0)) − (g(1,1) − g(0,1)) + (g(1,0) − g(0,0))

= 0. △

The collection
(
Ck(G), ∂k

)
k∈Z is called the cubical chain complex for Rd with coefficients inG. The

collection
(
Ck(X,G), ∂k

)
k∈Z is called the cubical chain complex for X with coefficients in G.

The groundwork is now in place to introduce the central concepts of homology theory.

Again, fix a cubical set X ⊆ Rd. For k ∈ Z, a k-cycle in X is an element of Zk(X,G) :=

ker∂k. A k-boundary in X is an element of Bk(X,G) := im∂k+1. Since the boundary map is a
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group homomorphism, both Zk(X,G) and Bk(X,G) are subgroups of Ck(X,G). By fact 17, every

boundary is a cycle. To see how the converse can fail, let X be the union of the four edges of a single

plaquette (i.e., 2-cube.) Let G = Z/2Z and assign 1 ∈ G to each edge. The 1-chain so obtained is a

cycle, but not a boundary, because the plaquette itself is missing from X.

Speaking informally, the failure of a k-cycle to be a k-boundary indicates the presence of a hole

in the complex. If k = 2 the hole is a 3-dimensional void (as in Swiss cheese); if k = 0 the hole

is an additional connected component (this last part will be made clear later.) But actually, the

situation is more subtle: the presence and absence of holes depends on the coefficient group. For

an illustration of this phenomenon, see section 6.1.

The kth homology group of X with coefficients in G is the quotient group Hk(X,G) := Zk(X,G)/

Bk(X,G). The homology of X with coefficients in G is the sequence H∗(X,G) :=
(
Hk(X,G)

)
k∈Z. An

element of a homology group (that is, an equivalence class of cycles modulo boundaries) is called a

homology class, and any two cycles belonging to the same homology class are said to be homologous

to one another.

The cases G = Z, G = Q, and G = Z/qZ (for q ⩾ 2) are called the integral, rational, and mod-q

homology. In the literature on algebraic homology, the omission of the coefficient group—writing

simply Hk(X)—usually indicates the integral homology.8

Example 19 (Homology of a graph). Let X be a finite union of 1-cubes and 0-cubes in Zd. Then

X may be viewed as an undirected graph GX = (V, E) =
(
K0(X), K1(X)

)
. (Every finite subgraph

of the hypercubic lattice has this form.) Then H0(X,Z) = Zn where n is the number of connected

components of X. To see why, notice that every 0-chain is a 0-cycle, and the 0-boundaries are

generated by the chains of the form 1v − 1w where v and w are vertices belonging to the same

component; therefore, each element of H0(X,Z) is an equivalence class of chains that all have the

same sum of coefficients within each component (more generally, see fact 25.) Also,H1(X,Z) = Zm

for somem ⩾ 0, because there are no 1-boundaries and every nontrivial 1-cycle has order ∞ in the

group C1(X,Z). The rank m may be thought of as the maximal number of independent cycles in

the graph. All other homology groups are trivial. It can be shown that n−m = |K0(X)|− |K1(X)|

(this is closely related to Euler’s polyhedron formula, V − E+ F = 2.) We’ll see a generalization of

this identity in fact 24. △

Example 20 (Homology of an elementary cube). LetX = [0, 1]×{0} ⊆ R2. In the integral homology,

8By virtue of a result known as the universal coefficient theorem, the integral homology groups determine the
homology groups with coefficients in any other abelian group [Mun84, p. 313].
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the 1-chains have the form n[0,1] where n ∈ Z (X has only one 1-cube, [0, 1], and a chain is an

assignment of a coefficient n to that 1-cube). So the 0-boundaries are the 0-chains n{1} − n{0}

for n ∈ Z. The 0-cycles are the 0-chains, which have the form a{0} + b{1} for a, b ∈ Z. Thus,

the homology group H0(X,Z), defined as the quotient of the 0-cycles by the 0-boundaries, is

isomorphic to Z. The homology group H1(X,Z) is trivial because the only 1-cycle is 0[0,1].

More generally, if X is a single elementary cube of any dimension in Rd, then [KMM04, pp.

79-80]

Hk(X,Z) =


Z, k = 0,

0 (the trivial group), k ̸= 0.
△

Example 21 (Homology of a sphere). For 0 ⩽ n < d, Let X be the boundary (in the sense of general

topology) of an (n+1)-cube, so thatX is homeomorphic to the n-sphere. It can be shown [KMM04,

pp. 90, 303] that if n > 0 then H0(X,Z) = Hn(X,Z) = Z, and if n = 0 then H0(X,Z) = Z2, and for

all n that Hk(X,Z) = 0 for k ̸= 0, n. (More concisely, Hk(X,Z) = ZJk=0K+Jk=nK for all k and n.)

The geometric intuition (for n > 0) is the following. The n-sphere for has one connected com-

ponent; therefore,H0(X,Z) = Z. It encloses one (n+1)-dimensional void; therefore,Hn(X,Z) = Z

(because an n-cycle is determined completely by the coefficient on a single n-face of the void, and

there are no nontrivial n-boundaries.) The fact that the other homology groups are trivial is more

complicated to prove directly, but geometrically it has to do with the absence of voids of other

dimensions. △

Example 22 (Homology of the 2-torus). Let X ⊆ R3 be a union of 32 plaquettes as shown in fig. 1,

so that X is homeomorphic to the 2-dimensional torus.9

There are no 3-cubes in X, so there are no nontrivial 2-boundaries. To understand the 2-cycles,

notice that since every edge belongs to exactly 2 plaquettes, the coefficient on a single plaquette

uniquely determines the coefficients on all the remaining plaquettes. So Z2(X,G) is (isomorphic

to) G. Thus, H2(X,G) = G, too.

Every 1-cycle is homologous (that is, equal modulo a 1-boundary) to some 1-cycle whose

support is a subset of the 8 edges shown in bold in fig. 1, which form two independent loops

encircling the torus. This can be seen by algorithmically building up an appropriate 2-chain, one

plaquette at a time, whose boundary cancels out the coefficients on all other edges. Moreover, it’s

not hard to see that every homology class contains only one such cycle. But a cycle supported on

9Alternately, though it’s harder to visualize, we could build a torus using just 16 plaquettes in R4. This discrete
“Clifford torus” is a subset of the boundary of a 4-cube.
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these two loops is determined by one coefficient picked freely for each loop, so H1(X,G) = G
2.

As in the previous examples, X is connected, so H0(X,G) = G. All other homology groups are

trivial. To summarize, for any (abelian) coefficient group G,

Hk(X, G) =



G, k = 0,

G2, k = 1,

G, k = 2,

0 otherwise.

△

Figure 1: The discrete 2-torus

Example 23 (Homology of the Klein bottle). Let X ⊆ R4 be (homeomorphic to) the Klein bottle.

Then [Mun84, pp. 37, 52]

Hk(X, Z) =


Z, k = 0,

Z⊕ Z/2Z, k = 1,

0 otherwise,

but Hk(X, Z/2Z) =



Z/2Z, k = 0,

(Z/2Z)2, k = 1,

Z/2Z, k = 2,

0 otherwise.

It’s worth spending some time to understand this example. There is one nontrivial 2-cycle mod

2: assign coefficient 1 ∈ Z/2Z to each plaquette in X. To see why there are no nontrivial 2-cycles
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over Z, we argue by contradiction: in any 2-cycle, the coefficient on a plaquette determines the

coefficients on its adjacent plaquettes, but after wrapping all the way around the Klein bottle we

end up with the wrong signs on the coefficients. This yields, however, a 1-boundary with even

coefficients, which is the source of the Z/2Z summand in H1(X, Z). To be more explicit, let c be

the cycle that assigns 1 to each edge along some closed loop encircling the neck of the Klein bottle.

Then c is not a boundary, but 2c is a boundary. This is an example of a torsion [Sti93, pp. 170-171].

We see that the mod-2 homology of the Klein bottle coincides with the mod-2 homology of the

torus, but their integral homologies are distinct [Mun84, p. 52]. △

The kth Betti number βk(X,Z) of X is the rank of the group Hk(X,Z) (that is, the number of

copies of Z in its cyclic decomposition.) So for the Klein bottle β0(X,Z) = β1(X, Z) = 1 and

βk(X,Z) = 0 for k ̸= 0, 1. For q ⩾ 2 we have Hk(X,Z/qZ) = (Z/qZ)mk ⊕ T for some mk and

some group T whose every element has order strictly less than q (according to the decomposition

theorem for finite abelian groups), so we can define the kth Betti number with coefficients in Z/qZ

to be βk(X,Z/qZ) := mk (i.e., the rank of the kth homology group over Z/qZ.) In particular, for

prime p we find βk(X,Z/pZ) = logp

∣∣Hk(X,Z/pZ)
∣∣. We can describe the homology groups, or

for that matter any finitely-generated abelian groups, by their (integral) Betti numbers and torsion

coefficients, which come from the cyclic decomposition. But arguably Betti numbers are passé, and

the modern approach is to work with the homology groups directly. Historically, Betti numbers

and torsion coefficients came first. The connection to group theory was made in 1926 by Emmy

Noether [Sti93, p. 171].

We will, however, have use for the following result. See [Die08, pp. 308-310] for the details and

the proof in the more general setting of cellular homology, and for historical references.

Fact 24 (Euler–Poincaré Theorem). For every cubical set X ⊆ Rd, and every integer q ⩾ 2,

∑
k⩾0

(−1)k|Kk(X)| =
∑
k⩾0

(−1)kβk(X, Z) =
∑
k⩾0

(−1)kβk(X, Z/qZ).

The value of the sums in the Euler–Poincaré Theorem is called the Euler characteristic ofX, and is

denoted χ(X). The theorem states that the “combinatorial Euler characteristic” coincides with the

“homological Euler characteristic”. For the plaquette 2-torus (example 22) the left-hand equality

becomes 32−64+32 = 1−2+1. For the Klein bottle (example 23), the right-hand equality becomes

1− 1 = 1+ 2− 1.
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Fact 25. For every cubical set X ⊆ Rd, and every abelian group G,

H0(X, G) ∼= Gk(X)

where k(X) is the number of connected components in X. In particular, β0(X,Z) = β0(X,Z/qZ) = k(X)

for all q ⩾ 1.

Proof. This was already shown in example 19 for the case where X is a graph andG = Z. The proof

of the general case is identical.

Often it’s useful to add an “empty face” of dimension −1 to each cubical complex. That is, let

∅ be the sole (−1)-cube, and consider it to be a face of every other elementary cube. This gives the

so-called reduced homology, indicated by writing tildes above all symbols as below. The reduced

homology eliminates many special cases in the statements of theorems and proofs in homology

theory, though it’s conventional (at least in introductory treatments) to work with the non-reduced

homology. We’ll use the reduced homology only to define cyclic boundary spin conditions in

section 4, and in proposition 59, so these definitions can be omitted on the first reading.

The augmented cubical chain complex of X is the collection
(
C̃k(G), ∂̃k

)
k∈Z where

C̃k(X,G) =


G for k = −1,

Ck(X,G) for k ̸= −1,

∂̃k =



c 7→
∑

Q∈K0(X)

c(Q) for k = 0, (i.e., sum of c’s coefficients on all vertices Q)

0 for k = −1,

∂k for k ̸= 0,−1.

It’s easy to augment the proof of the boundary relation (fact 17) to show ∂̃k−1 ◦ ∂̃k = 0. This leads

to reduced boundaries B̃k(X,G) = im ∂̃k+1, reduced cycles C̃k(X,G) = ker ∂̃k, reduced homology groups

H̃k(X,G) = C̃k(X,G)/B̃k(X,G), and the reduced homology H̃∗(X,G) :=
(
H̃k(X,G)

)
k∈Z. (We’ll have

no use for the reduced Betti numbers.) The change is not particularly significant, as the following

result (stated as [KMM04, p. 90, Theorem 2.95] for G = Z) indicates.
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Fact 26. If X is a nonempty cubical set then

Hk(X,G) =


H̃0(X,G)⊕G, k = 0,

H̃k(X,G), k ̸= 0.

Proof. It’s only necessary to examine k = 0 and −1 (the other cases are trivial.)

Let k = 0. A reduced 0-cycle is an assignment of coefficients to lattice points in X such that the

sum of all coefficients is 0. The cosets modulo the 0-boundaries are characterized by the sums of

coefficients on each component, and the sum on the last component is determined by the others.

So H̃0(X,G) = G
m−1 wherem is the number of connected components.

Let k = −1. Every chain is a cycle, and every chain is a boundary because X is nonempty. So

H̃−1(X,G) is trivial.

Next, we describe the cubical cohomology, which for us will be essential.

The cubical cochain complex for X with coefficients in G,
(
Ck(X,G), δk

)
k∈Z, is defined by duality.

Let hom(A,B) be the group of all group homomorphisms from abelian group A to abelian group

B (the group operation on hom(A,B) is defined pointwise.) We define

Ck(X,G) := hom(Ck(X,G), G), z ∈ Z

and

δk : Ck(X,G) → Ck+1(X,G),

c 7→ c ◦ ∂k+1, k ∈ Z.

The elements of Ck(X,G) are called k-cochains, and the map δk is called the coboundary operator.

See fig. 2.

· · · Ck−1 Ck Ck+1 · · ·

· · · Ck−1 Ck Ck+1 · · ·

∂k ∂k+1 ∂k+2∂k−1

δk−2 δk−1 δk δk+1

Figure 2: Chain complex and cochain complex

It’s common to use the angle-bracket notation for evaluation, ⟨a, b⟩ := a(b) for a ∈ Ck(X,G)
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and b ∈ Ck(X,G), and in this notation

⟨δkc, d⟩ = ⟨c, ∂k+1d⟩ for c ∈ Ck(X,G) and d ∈ Ck+1(X,G).

This boundary–coboundary duality relation—for us, true by definition—is sometimes called the

discrete Stokes theorem. It’s also possible to give a different definition of δk and derive this result as

a genuine, albeit trivial, theorem (this is done in [FLV21, §2.3.2].)

Again, it’s most common to take G = Z, as in [KM13]. But for us the most relevant coefficient

group will beG = Z/qZwithq ⩾ 2. Accordingly, recall the notation for group duality in section 2.1.

When G = Z/qZ, we may identify hom(Ck(X,G), G) with Ck(X,G)̂( := hom(Ck(X,G), T)
)

via

the embedding G ↪→ T, [j] 7→ e2πij/q, because the order of every element of Ck(X,G) divides q.

So we may write

Ck(X, Z/qZ) = Ck(X, Z/qZ)̂,
δk = ∂∗k+1, k ∈ Z.

The composition of adjacent coboundary operators is 0, just like with boundary operators.

Fact 27 (Coboundary relation). For every k ∈ Z,

δk ◦ δk−1 = 0.

Proof. By fact 17,

⟨δkδk−1c, d⟩ = ⟨δk−1c, ∂k+1d⟩ = ⟨c, ∂k∂k+1d⟩ = ⟨c, 0⟩ = 0

for c ∈ Ck−1(X,G) and d ∈ Ck+1(X,G).

A k-cocycle in X is an element of Zk(X,G) := ker δk. A k-coboundary in X is an element of

Bk(X,G) := im δk−1. Every coboundary is a cocycle (fact 27) so we define the kth cohomology

group of X with coefficients in G to be the quotient group Hk(X,G) := Zk(X,G)/Bk(X,G), and the

cohomology of X with coefficients in G to be the sequence H∗(X,G) :=
(
Hk(X,G)

)
k∈Z.

Notice that if c is a k-boundary and d is a k-cocycle, then by the discrete Stokes theorem

⟨d, c⟩ = 0.10

10In the (non-discrete) calculus of differential forms, the corresponding statement specializes to a classical result from
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The following example is essential for the application to the Potts gauge theory.

Example 28. Let G be a (finite or infinite) cyclic group with generator 1. Then a k-cochain, being a

group homomorphism, is determined by the values it assumes on the chains 1Q for allQ ∈ Kk(X).

Thus, Ck(X,G) may be identified with Ck(X,G), and under this identification ⟨·, ·⟩ is the dot

product of coefficient vectors (with respect to the usual ring multiplication on G). For a chain

c ∈ Ck(X,G), write ĉ ∈ Ck(X,G) for the corresponding cochain under this identification.

If Q is an edge in X then the coboundary δ11̂Q is a 2-cochain that puts coefficients ±1 on all

plaquettes in X incident to Q, and 0 on all other plaquettes. △

We can also define augmented cochains, reduced coboundaries, reduced cocycles, and reduced

homology groups H̃k(X,G): Let C̃k(X,G) be the dual of C̃k(X,G), let δ̃k be the dual of ∂̃k+1, and

define the remaining objects analogously.

There is a result called the Poincaré Lemma that gives sufficient topological conditions on X so

that all reduced cohomology groups are trivial, i.e., every reduced cocycle is a reduced coboundary.

See, for example, [FLV21, Lemma 2.2] or [Des+05, §11].

Table 1 summarizes our notation. For a lengthier explanation of (integral) cubical homology

theory, see [KMM04] and [KM13].

The machinery of cubical homology can be developed in several different ways. The approach

we’ve followed, from [KMM04], is similar in flavor to simplicial homology. There is also a cubical

variant of singular homology (see the remarks in [KMM04, §2.8] and [KM13, §1].) Another method

(as explained in the introductory paragraphs to this section) is to use a notation reminiscent of the

exterior calculus of differential forms, which may be more familiar to readers who have worked

with de Rham cohomology. This discrete exterior calculus is used in many papers on lattice gauge

theory, e.g., [Cha20; Cao20; FLV21]. For more comprehensive references see [Des+05] and [Cra23].

2.3 Probabilistic couplings and the stochastic ordering

This section reviews some basic probabilistic tools that will play a major role in what follows.

Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be probability spaces. A coupling of µ1 and µ2 is a probability

measure µ on the measurable space (Ω1 × Ω2, A1 ⊗ A2) whose first and second marginals are

µ1 and µ2, respectively. In other words, the pushforwards of µ under the coordinate projections

ρ1 : (ω1,ω2) 7→ ω1 and ρ2 : (ω1,ω2) 7→ ω2 are ρ1µ = µ1 and ρ2µ = µ2. This definition

vector calculus: A curl-free vector field in R3 has circulation 0 along any closed loop that bounds a surface.
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Symbol Meaning

Kk ⊆ P(Rd) Elementary k-cubes in Rd for 0 ⩽ k ⩽ d, empty otherwise
K ⊆ P(Rd) All elementary cubes in Rd

X ⊆ Rd A cubical set: a finite union of elementary cubes from K

Kk(X) The (finite) set of all k-cubes in X, i.e., {Q ∈ Kk | Q ⊆ X}
K(X) All elementary cubes in X, i.e., {Q ∈ K | Q ⊆ X}
Ck(X,G) All k-chains: The group GKk(X); trivial for k < 0 and k > d
gQ for g ∈ G and Q ∈ Kk(X) The k-chain that takes value g on Q, and 0 on all other k-cubes
1Q for Q ∈ Kk(X) The indicator of Q in Ck(X,G), when G is the additive group of

a ring with identity 1
◦
Q for Q ∈ K The associated elementary cell: The relative interior of Q
∂k : Ck(X,G) → Ck−1(X,G) Boundary map (a group homomorphism)
Bk(X,G) All k-boundaries: The image of ∂k+1

Zk(X,G) All k-cycles: The kernel of ∂k
Hk(X,G) The kth homology group: The quotient Zk(X,G)/Bk(X,G)

Ck(X,G) All k-cochains: The group hom(Ck(X,G), G), equal to the dual
̂CK(X,G) when G = T or when G is a finite subgroup of T

δk : Ck(X,G) → Ck+1(X,G) The coboundary map—the dual ∂∗k+1

Bk(X,G) All k-coboundaries: The image of δk−1

Zk(X,G) All k-cocycles: The kernel of δk

Hk(X,G) The kth cohomology group: The quotient Zk(X,G)/Bk(X,G)

βk(X, Z) The kth Betti number of Xwith integer coefficients: The
rank of the group Hk(X, Z) (i.e., the rank of its torsion-free part)

βk(X, Z/qZ) for q ⩾ 2 The kth Betti number of Xwith coefficients in Z/qZ: The
rank of Hk(X, Z/qZ) over Z/qZ

χ(X) The Euler characteristic
∑

k⩾0(−1)
k|Kk(X)|

Table 1: Notation for cubical homology and cohomology. Here k ∈ Z and G is a finite abelian
group.
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Discrete exterior calculus of differential forms Cubical homology

oriented 0-cell x+, x− for x ∈ Zd 0-cube, or vertex, Q ∈ K0, not oriented
oriented edge dxi, 1 ⩽ i ⩽ d 1-cube, or edge, Q ∈ K1, not oriented
k-form dxi1 ∧ · · ·∧ dxik k-cube Q ∈ Kk, not oriented
G-valued k-form f k-cochain c ∈ Ck(X,G)

exterior derivative df of G-valued k-form f coboundary δkc of k-cochain c
coderivative δf of G-valued k-form f boundary ∂kc of k-chain c
closed k-form k-cocycle
exact k-form k-coboundary
closed surface 2-cycle
Hodge duality dual cubical structure and Poincaré duality,

not explained here

Table 2: Dictionary for translating between discrete exterior calculus and cubical homology

extends to arbitrary (finite and infinite) collections of spaces: a coupling of an indexed family of

probability measures
(
(Ωi,Ai, µi)

)
i∈I

is a probability measure µ on the product measurable space(∏
i∈IΩi,

⊗
i∈IAi

)
that satisfies ρiµ = µi for every i ∈ I.

Couplings can often be identified with (equivalence classes of) probability kernels. Recall that

a probability kernel from (Ω1,A1) to (Ω2,A2) is a map K : Ω1 ×A2 → [0, 1] such that

(i) the map E 7→ K(ω1, E) is a probability measure for eachω1 ∈ Ω1, and

(ii) the mapω1 7→ K(ω1, E) is measurable for each E ∈ A2.11

Every probability kernel K from (Ω1,A1) to (Ω2,A2) and every probability measure µ1 on

(Ω1,A1) together induce a probability measure µ1 ⊗ K on the product measurable space (Ω1 ×

Ω2, A1 ⊗A2), defined by

(µ1 ⊗ K)(E) :=

∫
Ω1

µ1(dω1)

∫
Ω2

K(ω1, dω2)1E(ω1,ω2), E ∈ A 1 ⊗A2.

The opposite procedure—starting with a probability measure µ on (Ω1 × Ω2, A1 ⊗ A2) and

obtaining from it a transition kernel—is called disintegration of measure. If (Ω2,A2) is a standard

Borel space (as tends to be the case in applications), then there exists a probability kernel K from

(Ω1,A1) to (Ω2,A2) such that µ = (ρ1µ) ⊗ K (here, as before, ρ1µ is the marginal of µ on the

11It suffices to check this condition over a generating π-system for A2 [Kle14, pp. 180–181].
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first factor.) In the case that Ω1 and Ω2 are both finite, this result follows immediately from the

definitions: let K(x, ·) be the conditional measure µ(· | ω1 = x) whenever µ(ω1 = x) ̸= 0 and pick

K(x, ·) arbitrarily for all x with µ(ω1 = x) = 0. The general case is more subtle. The reader may

consult [Çin11] or any other introductory text on measure-theoretic probability.

Once we have a probability kernel, we can use it to push forward probability measures from

(Ω1,A1) to (Ω2,A2) or pull back functions from (Ω2,A2) to (Ω1,A1), and these two operations

are compatible, as stated in the following well-known theorem [Çin11, Theorem 6.3].

Fact 29 (Measure–kernel–function theorem). Let (Ω1,A1) and (Ω2,A2) be measurable spaces, and K

a probability kernel from and (Ω1,A1) to (Ω2,A2). Define

Kf2(ω1) :=

∫
Ω2

K(ω1, dω2)f(ω2), ω1 ∈ Ω1

for every measurable function f2 onΩ2 which is either nonnegative or bounded. For measurable f2 : Ω2 →

[0,∞], this defines a measurable function Kf2 : Ω1 → [0,∞]. For bounded measurable f2 : Ω2 → C, this

defines a bounded measurable function Kf2 : Ω1 → C.

Define

µ1K(E) :=

∫
Ω1

µ1(dω1)K(ω1, E), E ∈ A2

for every probability measure µ1 onΩ1. This defines a probability measure µ1K on (Ω2,A2).

Furthermore,

(µ1K)f2 = µ1(Kf2) =

∫
Ω1

µ1(dω1)

∫
Ω2

K(ω1, dω2)f2(ω2)

for all µ1 and f2 considered above.

Proof. The case of f2 : Ω2 → [0,∞] is proved in [Çin11, Theorem 6.3] by a standard measure-

theoretic argument. By subtracting an arbitrary constant, the result extends to every bounded

f2 : Ω2 → R. The case of bounded f2 : Ω2 → C follows by linearity.

It’s immediate from the definitions that µ1K = ρ2(µ1 ⊗ K) for all µ1 and K as above.

Readers familiar with dynamics might recognize fact 29 as the non-deterministic generalization

of the identity
∫
f2 dT∗µ1 =

∫
f2 ◦ T dµ1, where T is a measurable map from Ω1 to Ω2. We can

recover this deterministic identity by taking K(x, ·) to be the point mass δTx. In this case, the map
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µ1 7→ µ1K is the pushforward operator with respect to T , and the map f2 7→ Kf2 is the Koopman

operator f2 7→ f2 ◦ T .

Furthermore, if both Ω1 and Ω2 are finite, then K may be identified with a right stochastic

matrix. Writing µ1 and f2 as row and column vectors, respectively, the definitions given in fact 29

reduce to matrix multiplication, and the identity (µ1K)f2 = µ1(Kf2) is by associativity of matrix

multiplication [Çin11, p. 46, Exercise 6.31]. This observation is relevant to section 3.4, where we

discuss transferring observables between two models. (For the sake of completeness: The operation

µ1 ⊗ K corresponds to taking the matrix product diag(µ1)K and interpreting the resulting matrix

as a joint probability mass function.)

Now we discuss the stochastic ordering. For a partially ordered set P, a function f : P → R

is increasing (or monotone12) if x ⩽ y =⇒ f(x) ⩽ f(y). A set S ⊆ P is increasing (or monotone) if

its indicator 1S is an increasing function, that is, if x ∈ S =⇒ y ∈ S whenever x ⩽ y. Given

two probability measures µ and µ ′ on P, we say that µ is stochastically smaller than µ ′, or that µ

is stochastically dominated by µ ′, and write µ ⩽st µ
′, if the pair µ, µ ′ satisfies any of the equivalent

conditions given in the following theorem.

Theorem 30 (Strassen’s13 theorem, finite version). For probability measuresµ andµ ′ on a finite partially

ordered set P, the following are equivalent.

(i) µE ⩽ µ ′E for every increasing event E ⊆ P.

(ii) µf ⩽ µ ′f14 for every increasing function f : P → R.

(iii) There exists a coupling ν of µ and µ ′ such that ν {(x, y) ∈ P × P | x ⩽ y} = 1.

Proof. (iii) =⇒ (ii): For increasing f : P → R,

µf =

∫
f(x)dν(x, y) =

∫
f(x)1x⩽y dν(x, y)

⩽
∫
f(y)1x⩽y dν(x, y) =

∫
f(y)dν(x, y) = µ ′f.

12The official terminology from order theory is monotone (or order-preserving or occasionally isotone) but in analysis
and probability it’s common to use the ambiguous term increasing. To say that f : R → R is “increasing” might mean,
depending on the author and context, that f is monotone, or strictly monotone (x < y =⇒ f(x) < f(y)), or inflationary
(x ⩽ f(x) for all x).

13This theorem is traditionally attributed to Strassen [Str65, Theorems 6, 11], who proved it in the context of Polish
spaces. But other variants had apparently [Str65, p. 432] already been published in 1961 by Kellerer [Kel61] and Dall’Aglio
[Dal61]. Our theorem 30 and theorem 31 are considerably less general than the results in any of the aforementioned
papers.

14We use the probabilist’s de Finetti notation: For probability measure µ on Ω and random variable X : Ω → C, we
write µX := Eµ[X]. A measurable set E ⊆ Ω is identified with its indicator 1E.

37



(ii) =⇒ (i): Take f = 1E.

(i) =⇒ (iii): See [LP16, Theorem 10.4] for a short proof of the equivalence (i) ⇐⇒ (iii) via the

max flow min cut theorem.

Besides the case of finite P, we’ll also be interested in P = {0, 1}E for a countably infinite set E.

Endow P with pointwise ordering, product topology, and Borel σ-algebra (which coincides with

the cylinder σ-algebra.) We write µ ⩽st µ
′ if the pair µ, µ ′ satisfies any of the equivalent conditions

given in the following theorem.

Note that every increasing real-valued function on P is bounded because P has a least element

and a greatest element, so the expectations in the theorem statement exist.

Theorem 31 (Strassen’s theorem, countable version). For probability measures µ and µ ′ on P = {0, 1}E,

the following are equivalent.

(i) µf ⩽ µ ′f for every measurable increasing function f : P → R.

(ii) µf ⩽ µ ′f for every continuous increasing function f : P → R.

(iii) There exists a coupling ν of µ and µ ′ such that ν {(x, y) ∈ P × P | x ⩽ y} = 1.

Proof. (iii) =⇒ (i): Argue as in the proof of theorem 30.

(i) =⇒ (ii): Trivial.

(ii) =⇒ (iii): Take a sequence of finite sets E1 ⊆ E2 ⊆ · · · → E, and for every n ⩾ 1 let µn and

µ ′
n be the respective marginals of µ and µ ′. By (ii), every increasing function f : En → R satisfies

µnf ⩽ µ ′
nf. By the finite version of this theorem (theorem 30), there exists a coupling νn of µn

and µ ′
n such that νn

{
(x, y) ∈ {0, 1}En × {0, 1}En

∣∣ x ⩽ y
}
= 1. After passing to an appropriate

subsequence we may assume that ν1, ν2, . . .→ νweakly for some measure ν on {0, 1}E. To be more

precise, we may assume that ρFνn → ρFν weakly for all finite F ⊆ E, where ρF((x, y)) = (x|F, y|F).

Writing ρ1(x, y) = x, this implies ρFµn = ρ1ρFνn → ρ1ρFν weakly for all finite F ⊆ E. But ρFµn
is eventually equal to ρFµ, so ρFρ1ν = ρFµ; thus, ρ1ν = µ and likewise ρ2ν = µ ′. Thus, ν is a

coupling ofµ andµ ′. To proveν {(x, y) ∈ P×P | x ⩽ y} = 1, express the event {(x, y) ∈ P×P | x ⩽ y}

as the limit of the decreasing sequence of events {(x, y) ∈ P × P | x|En
⩽ y|En

}. (This compactness

argument was suggested in [Lig05, p. 75].)

The set {0, 1} in theorem 31 may be replaced with an arbitrary closed subset of R, and the

theorem statement still holds after replacing “function” with “bounded function” in (i) and (ii)
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[GHM01, Theorem 4.6]. More generally still, a version of Strassen’s theorem holds for Polish spaces

[Lin92, p. 129].

For more on couplings and stochastic domination, refer to [GHM01, §4; Gri06, ch. 2; Lin92;

Hol12].
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3 The higher Potts and FK–Potts models and their coupling, in finite

volume with free boundary condition

Sections 3 to 5 will use the following parameters. Take integers 1 ⩽ r ⩽ d (cell dimension and

ambient dimension, respectively), real p ∈ [0, 1], and integer q ⩾ 1 (which will never be assumed

to be prime, except where stated explicitly.) Take β ∈ [0,∞] such that p = 1 − e−β (declaring

e−∞ = 0.) The gauge group Gwill be the additive group Z/qZ.

The usual practice in lattice gauge theory is instead to view G as the multiplicative group of

complex qth roots of unity, but we will treat G as an additive group, which accords with the

conventions of homology theory. We’ll also consider the cochain groups (whose elements are

characters) to be additive groups, denoting the trivial character by 0, again, to keep in line with the

conventions of homology theory over abelian groups. Our characters, however, are still maps into

the circle T ⊆ C. So (confusingly) the character 0 is the constant 1map, and (more confusingly) the

sum of characters is their pointwise product (as already defined at the very start of section 2.1.) We

will occasionally also need to add characters pointwise when discussing Fourier decompositions

(of course, the group of cochains is not closed under pointwise sum.) The situation is far from

ideal, but that is the price we pay for attempting to bridge the two theories.

LetΛ be a finite nonempty set of (elementary) r-cubes in Rd, and let X =
⋃

Q∈ΛQ ⊆ Rd (recall

from section 2.2 that X includes, along with each r-cube Q ∈ Λ, all lower-dimension faces of Q.)

A prototypical example is the N-box, BN = [−N,N]d ⊆ Rd for some N ⩾ 1, with Λ = Kr(BN) (so

that X ⊆ BN, and X ⊊ BN if r < d.)

3.1 The higher Potts model

The lattice spin system presented here encompasses both the classical Potts model (for parameter

r = 1) and the Potts lattice gauge theory (for parameter r = 2) [AF84, §3], which assigns spins

to the nearest-neighbor edges. The latter two models generalize the Ising model and Ising lattice

gauge theory, respectively, which have q = 2. Spin systems for r ⩾ 3, that is, those which assign

elements of the gauge group to cells of dimension 2 or greater, are called higher lattice gauge theories.
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Let ΣX 15 be the additive group of (r− 1)-cochains,

ΣX := Cr−1(X, Z/qZ) =
(
Cr−1(X, Z/qZ)

)̂ =
(
(Z/qZ)Kr−1(X)

)̂.
We identify the cochains with the chains as explained in eq. (3).16 Under this identification, a

configuration σ ∈ ΣX is an assignment of a “spin” from Z/qZ to each (r − 1)-cube in X. The

(r− 1)-cube Potts model on Xwith parameters β and q has probability measure

πX,β,q(σ) :=


e−βH(σ)

ZP(β, q)
where H(σ) = −

∑
Q∈Kr(X)

JσQ = 1K for 0 ⩽ β <∞,
Jσ ∈ Zr−1(X, Z/qZ)K

|Zr−1(X, Z/qZ)|
for β = ∞, σ ∈ ΣX, (5)

where the partition function ZP(β, q) for 0 ⩽ β <∞ is the normalizing constant

ZP(β, q) :=
∑

σ∈ΣX

e−βH(σ),

J·K is the indicator function (page 3), and

σQ := ⟨σ, ∂r1Q⟩, Q ∈ Kr(X).

Recall that this angle-bracket notation means σ(∂r1Q); here σ is a cochain and ∂r1Q is a chain.

So σQ is the sum of spins on the boundary of Q, taking orientation into account, considered

as element of C (that is, σQ = e2πik/q for some integer k.) Thus, the Hamiltonian H(σ) is the

(negated) tally of the r-cubes with zero net boundary spin.

Note that to reconcile eq. (5) with the Ising model, where the summands in the Hamiltonian

are ±1, the parameter β must be modified by a factor of 2 and the partition function must also be

multiplied by a constant accordingly.

In the existing literature on lattice gauge theory, it’s more usual to describe the Hamiltonian

H(σ) in eq. (5) in terms of a unitary representation of the gauge group (see, for example, [Cao20,

p. 1440].) Equation (5) may be expressed in this form by taking the unitary representation ρ :

15In most cases our notation will explicitly specify X in order to avoid confusion once we begin discussing infinite-
volume limits in section 5.

16Of course, it’s possible to simply define spin configurations to be chains. However, treating them as cochains results
in a more aesthetically pleasing theory. If the motivation seems opaque at this point, consider that will always be
taking the coboundaries of spin configurations and never their boundaries. See the beginning of section 3.4 for futher
motivation. Note that [HS16, p. 8] and [DS23, §5] also define spin configurations to be cochains.
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Z/qZ → GL(q,C) given in block matrix form as

ρ([k]) =

0 Iq−1

1 0

k

, [k] ∈ Z/qZ

where Iq−1 is the (q − 1) × (q − 1) identity matrix, so that ρ([1]) is a coordinate permutation of

order q. Then tr(ρ(g)) = qJg = [0]K and (now considering σQ as an element of Z/qZ)

H(σ) = −
1

q

∑
Q∈Kr(X)

ℜ tr(ρ(σQ)).

The indicator in (5) for β = ∞ may be written as

Jσ ∈ Zr−1(X, Z/qZ)K =
∏

Q∈Kr(X)

JσQ = 1K.

One way to understand this statement is to identify the cocycles with cycles via the standard dual

basis, so that σ is (identified with) an assignment of spins (elements of Z/qZ) to the (r− 1)-cubes.

Then, speaking loosely, the coboundary operator δr−1 sends each (r − 1) cube to all its incident

r-cubes, and if an r-cube is present then its incident (r− 1)-cubes must make zero net contribution

to it.

This characterization of cocycles is useful enough to be stated as an explicit result for future

reference.

Proposition 32. For every cubical set Y ⊆ Rd, integer k, and σ ∈ Ck−1(Y, Z/qZ),

σ ∈ Zk−1(Y, Z/qZ) ⇐⇒
∏

Q∈Kk(Y)

JσQ = 1K = 1.

Proof. σ ∈ Zk−1(Y, Z/qZ) ⇐⇒ δk−1σ = 0

⇐⇒ ⟨δk−1σ, c⟩ = 1 for every c ∈ Ck(Y, Z/qZ)

⇐⇒ ⟨δk−1σ, 1Q⟩ = 1 for every Q ∈ Kk(Y)

⇐⇒ ⟨σ, ∂k1Q⟩ = 1 for every Q ∈ Kk(Y)

⇐⇒
∏

Q∈Kk(Y)

JσQ = 1K = 1.
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3.2 The higher FK–Potts model

We now extend the FK–Potts, or random-cluster, model to arbitrary-dimension cells. The random-

cluster model actually allows arbitrary real q ∈ (0,∞) [Gri06, §1.2], but we’ll be constrained to

integer q ⩾ 1. The case q = 1 is independent Bernoulli(p) percolation on the r-cubes.

Let ΩX := {0, 1}Kr(X). Elements of ΩX will be called configurations. For a given configuration

ω ∈ ΩX, we say an r-cubeQ ⊆ X is open ifω(Q) = 1 and closed ifω(Q) = 0. Each configurationω

gives rise to a cubical set consisting of all open r-cubes and all lower-dimension cubes,

Xω :=
⋃

Q∈Kr(X)
ω(Q)=1

Q ∪
⋃

Q∈Kr−1(X)

Q

=
⋃

Q∈Kr(X)
ω(Q)=1

Q ∪
⋃

Q∈Kk(X)
k<r

Q ⊆ Rd.

To put it another way, Xω is Xwith the relative interiors of all closed r-cubes removed,

Xω = X
∖ ⋃

Q∈Kr(X)
ω(Q)=0

◦
Q.

Note that X = Xω1 , whereω1 is the configuration with all r-cubes open.

The r-cube FK–Potts model on Xwith parameters p and q has probability measure

φX,p,q(ω) :=
1

ZFKP(p, q)
(1− p)c(ω)po(ω)

∣∣Zr−1(Xω, Z/qZ)
∣∣, ω ∈ ΩX, (6)

where ZFKP(p, q) is the normalizing constant, the values o(ω) and c(ω) are the number of open

and closed r-cubes in ω, respectively, and the last factor is the number of (r − 1)-cocycles in Xω

with coefficients in the group Z/qZ.

For q = 1 all (co)chain, (co)cycle, (co)boundary, and (co)homology groups are trivial, so each

configurationω occurs with probability (1− p)c(ω)po(ω).

Proposition 33 below is meant primarily as a reference to help reconcile various formulas in the

existing literature, and secondarily to assist with proofs of some results that follow. In particular,

for r = 1, after identifying the set Xω ⊆ Rd with a graph (example 19), eq. (8) reduces eq. (6) to
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the usual random-cluster measureφX,p,q(ω) = 1
ZRC(p,q)

(1−p)c(ω)po(ω)qk(ω). Equation (9) was

presented as the “wrong” formula for r = 2 and q ⩾ 2 in [AF84, (3.7), (6.2)]. In general, when q

is not prime, the order of the rth homology group Hr(Xω, Z/qZ) may fail to be a power of q, as

demonstrated by the counterexamples in [AF84, §4].

Constant factors such asq|Kr−1(X)| may, of course, be suppressed by absorbing into the partition

function ZFKP(p, q), and likewise q−o(ω) may appear as qc(ω) (because o(ω) + c(ω) is constant.)

Proposition 33 (Counting cocycles). The dependence factor in eq. (6) satisfies

∣∣Zr−1(Xω, Z/qZ)
∣∣ =

|Cr−1(X, Z/qZ)|
|Br−1(Xω, Z/qZ)|

= q|Kr−1(X)|−o(ω)
∣∣Hr(Xω, Z/qZ)

∣∣, ω ∈ ΩX. (7)

The number of 0-cocycles is

∣∣Z0(Xω, Z/qZ)
∣∣ = qk(ω), ω ∈ ΩX, (8)

where k(ω) is the number of connected components in the graph (V, E(ω)) =
(
K0(X), K1(Xω)

)
.

If q is prime then

∣∣Zr−1(Xω, Z/qZ)
∣∣ = q|Kr−1(X)|−o(ω)+βr(ω), ω ∈ ΩX, (9)

where βr(ω) := βr(Xω,Z/qZ) (Betti numbers with coefficients were defined on page 29.)

If q is prime and r = 2 then

∣∣Zr−1(Xω, Z/qZ)
∣∣ = q|K0(X)|−k+β1(ω) (10)

where k is the number of connected components in X.

Proof. Letω ∈ ΩX. Since Kk(Xω) = Kk(X) for all k < r,

Ck(Xω, Z/qZ) = Ck(X, Z/qZ) for all k < r. (11)
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The first equality in eq. (7):

|Zr−1(Xω, Z/qZ)| = |ker δr−1|

= |ker∂∗r |

= |Ann(im∂r)| (by fact 8)

=
|Cr−1(Xω, Z/qZ)|

| im∂r|
(by fact 4)

=
|Cr−1(Xω, Z/qZ)|
|Br−1(Xω, Z/qZ)|

=
|Cr−1(X, Z/qZ)|
|Br−1(Xω, Z/qZ)|

(by eq. (11).) (12)

The second equality in eq. (7):

|Zr−1(Xω, Z/qZ)| =
|Cr−1(Xω, Z/qZ)|

| im∂r|
(as in derivation (12))

=
|Cr−1(X, Z/qZ)|

|Cr(Xω, Z/qZ)| / |ker∂r|
(by the first isomorphism theorem)

=
q|Kr−1(X)|

qo(ω) / |Zr(Xω, Z/qZ)|

= q|Kr−1(X)|−o(ω)
∣∣Hr(Xω, Z/qZ)

∣∣ (because Br(Xω, Z/qZ) is trivial.)

As for eq. (8),

∣∣Z0(Xω, Z/qZ)
∣∣ =

|C0(Xω, Z/qZ)|
|B0(Xω, Z/qZ)|

(continuing from eq. (12) with r = 1)

=
|Z0(Xω, Z/qZ)|
|B0(Xω, Z/qZ)|

(because C0(Xω, Z/qZ) = Z0(Xω, Z/qZ))

=

∣∣∣∣ Z0(Xω, Z/qZ)
B0(Xω, Z/qZ)

∣∣∣∣ (by Lagrange’s theorem for finite groups)

= |H0(Xω, Z/qZ)|

=
∣∣∣(Z/qZ)k(Xω)

∣∣∣ (by fact 25)

= qk(ω) (because k(ω) = k(Xω).)

If q is prime then Z/qZ is a field, so all boundary maps are linear maps between vector spaces

over Z/qZ. Hence the group Hr(Xω, Z/qZ) is also a vector space over Z/qZ, with

∣∣Hr(Xω, Z/qZ)
∣∣ = qβr(ω).
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This proves eq. (9).

If q is prime and r = 2 then the Euler characteristic formula (fact 24)

χ(ω) = β2(ω) − β1(ω) + β0(ω) = |K2(Xω)|− |K1(Xω)|+ |K0(Xω)|

reduces by fact 25 to

β2(ω) − β1(ω) + k = o(ω) − |K1(X)|+ |K0(X)|,

where k := k(X) is the number of connected components in X (we’re using the fact that k(X) =

k(Xω) whenever r > 1.) Rearranging,

|K1(X)|− o(ω) + β2(ω) = |K0(X)|− k+ β1(ω),

which proves eq. (10).

FKG and its applications

The FKG machinery, introduced in the 1970s [Gri06, Appendix], consists of a correlation inequality

together with a handful of related results that are important to statistical physics, percolation, and

related areas. The FKG property was originally developed in the context of the random-cluster

model, so it’s reasonable to hope that it’s shared by the higher FK–Potts model. Indeed, this turns

out to be the case. After the proof, we’ll explore a few consequences.

The notation and terminology will mostly follow [Gri06, §2.2].

For any finite set E define ΩE := {0, 1}E (with apologies for overloading the notation: the set

ΩX from before is ΩE with E = Kr(X).) Endow ΩE with pointwise ordering, ω1 ⩽ ω2 ⇐⇒

ω1(e) ⩽ ω2(e) for all e ∈ E. We may take joins and meets (i.e., respectively, least upper bounds

and greatest lower bounds) of elementsω1,ω2 ∈ ΩE,

(ω1 ∨ω2)(e) := max(ω1(e),ω2(e)),

(ω1 ∧ω2)(e) := min(ω1(e),ω2(e)) for e ∈ E.

A probability measure on a finite (or, more generally, discrete) measurable space is called

(strictly) positive if every nonempty set has strictly positive probability.
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Let µ be a positive probability measure on the measurable space (ΩE,P(ΩE)). For E ′ ⊆ E and

ξ ∈ {0, 1}E
′ , let µξ be the probability measure onΩE\E ′ = {0, 1}E\E

′ given by

µξ(ω) := µ(ω× ξ | ξ), ω ∈ ΩE\E ′ ,

where (ω × ξ)(e) =


ξ(e), e ∈ E ′

ω(e), e ̸∈ E ′
, and µ(· | ξ) is shorthand for the conditional probability

µ
(
·
∣∣ {ω× ξ | ω ∈ ΩE\E ′}

)
. Since µ is assumed to be positive, this conditioning event {ω× ξ | ω ∈

ΩE\E ′} ⊆ ΩE always has nonzero µ-measure, and µξ is also positive.

We say that µ has the weak FKG property, or is positively associated, or has positive correlations, if

µ(fg) ⩾ µ(f)µ(g) for all increasing functions f, g : ΩE → R. (13)

We say that µ has the strong FKG property if it satisfies any of the equivalent conditions in the

following theorem [Gri06, Theorems 2.19, 2.24].

Theorem 34. For a positive probability measure µ on ΩE = {0, 1}E, where E is a finite set, the following

are equivalent.

(i) Strong positive association: For every E ′ ⊆ E and every ξ ∈ {0, 1}E
′ , the measure µξ is positively

associated (inequality (13)).

(ii) FKG lattice condition (also known as log-supermodularity): For all pairsω1,ω2 ∈ ΩE,

µ(ω1 ∨ω2)µ(ω1 ∧ω2) ⩾ µ(ω1)µ(ω2).

(iii) 2-Position FKG lattice condition: For all incomparable pairsω1,ω2 ∈ ΩE with Hamming distance

2 (that is, differing in precisely two positions e, e ′ ∈ Ewithω1(e)+ω1(e
′) = ω2(e)+ω2(e

′) = 1,)

µ(ω1 ∨ω2)µ(ω1 ∧ω2) ⩾ µ(ω1)µ(ω2).

(iv) Monotonicity: For every E ′ ⊆ E and for all pairs ξ, ζ ∈ {0, 1}E
′ ,

ξ ⩽ ζ =⇒ µξ ⩽st µζ.
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(v) 1-Monotonicity: For every e ∈ E and for all pairs ξ, ζ ∈ {0, 1}E\{e},

ξ ⩽ ζ =⇒ µξ ⩽st µζ

or, equivalently,

ξ ⩽ ζ =⇒ µξ(e 7→ 1) ⩽ µζ(e 7→ 1).

The phrase FKG Inequality (which we won’t use) may refer either to inequality (13) or to the

implications (ii) =⇒ (13) [Gri06, Theorem 2.16] or (v) =⇒ (13) [Geo11, Theorem 4.11].

For the product Bernoulli(p) measure with p ∈ (0, 1), inequality (13) holds and is named

Harris’s Lemma after Ted Harris, who published a proof in 1960 [BR06, pp. 39–42].

Inequality (13) may be contrasted with some analogous classical results for functions of a real

variable. Chebyshev’s Association Inequality states that nondecreasing functions f, g : R → R applied

to a real-valued random variable X are positively correlated: E[f(X)g(X)] ⩾ E[f(X)]E[g(X)] (for two

generalizations, see [BLM13, Theorems 2.14, 2.15].) A special case (by taking discrete uniform

X) is Chebyshev’s Sum Inequality: 1
n

∑
aibi ⩾

(
1
n

∑
ai
) (

1
n

∑
bi
)

whenever a1 ⩽ · · · ⩽ an and

b1 ⩽ · · · ⩽ bn.

Now, the result—a partial extension of [Gri06, Theorem 3.8], which covers the case r = 1 for

arbitrary real q ⩾ 1. Recall that for us 1 ⩽ r ⩽ d, and q is a positive integer. The result for general

r and prime q was also given in [HS16, Theorem 5.1].17 Notice that φX,p,q is positive for every

p ∈ (0, 1), so theorem 34 applies.

Theorem 35 (Strong FKG). For every p ∈ (0, 1), the higher FK–Potts measure (6) has the strong FKG

property.

Proof. We’ll prove the FKG lattice condition

φX,p,q(ω1 ∨ω2)φX,p,q(ω1 ∧ω2) ⩾ φX,p,q(ω1)φX,p,q(ω2), ω1,ω2 ∈ ΩX.

17Hiraoka and Shirai’s proof is very short and uses a higher-level tool from algebraic topology. The proof presented
here uses only elementary group theory. I do not know whether Hiraoka and Shirai’s proof extends to arbitrary
(non-prime) q.
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By proposition 33, this reduces to

po(ω1∨ω2)+o(ω1∧ω2)(1− p)c(ω1∨ω2)+c(ω1∧ω2)∣∣Br−1(Xω1∨ω2
)
∣∣ ∣∣Br−1(Xω1∧ω2

)
∣∣ ⩾

po(ω1)+o(ω2)(1− p)c(ω1)+c(ω2)∣∣Br−1(Xω1
)
∣∣ ∣∣Br−1(Xω2

)
∣∣ , (14)

ω1, ω2 ∈ ΩX.

(For clarity, in this proof we’ll forgo indicating the coefficient group Z/qZ.)

The numerators in (14) are equal18 because

o(ω1 ∨ω2) + o(ω1 ∧ω2) = o(ω1) + o(ω2),

c(ω1 ∨ω2) + c(ω1 ∧ω2) = c(ω1) + c(ω2), ω1,ω2 ∈ ΩX.

Our symbol for the boundary operator is ambiguous: We write both

∂r : Cr(X) → Cr−1(X) and

∂r : Cr(Xω) → Cr−1(Xω) ( = Cr−1(X)) for everyω ∈ ΩX.

In this proof, henceforth, the symbol ∂r shall always refer to the former, “unconstrained” variant,

while for each ω ∈ ΩX we’ll identify Cr(Xω) with a subgroup of Cr(X) (via the inclusion κω :

Cr(Xω) → Cr(X), which sends an r-chain in Xω to the same r-chain in X, assigning coefficient

0 to every r-cube missing from Xω.) Clearly, under this identification the unconstrained map ∂r
satisfies Br−1(Xω) = ∂r(Cr(Xω)). Therefore,

∣∣Br−1(Xω1∨ω2
)
∣∣ ∣∣Br−1(Xω1∧ω2

)
∣∣ =

∣∣∂r(Cr(Xω1∨ω2
)
)∣∣ ∣∣∂r(Cr(Xω1∧ω2

)
)∣∣

=
∣∣∂r(Cr(Xω1

) + Cr(Xω2
)
)∣∣ ∣∣∂r(Cr(Xω1

) ∩ Cr(Xω2
)
)∣∣

⩽
∣∣∂r(Cr(Xω1

)
)∣∣ ∣∣∂r(Cr(Xω2

)
)∣∣ (by fact 14)

=
∣∣Br−1(Xω1

)
∣∣ ∣∣Br−1(Xω2

)
∣∣, ω1,ω2 ∈ ΩX.

This is the required relation between the denominators of inequality (14).

The FKG properties have numerous applications. Here are a few of them.

18We are implicitly proving this general result: A positive probability measure P has the strong FKG property if and
only if any (or every) probability measure of the form Pp(ω) = 1

Zp
(1 − p)c(ω)po(ω) P(ω) for p ∈ (0, 1) has the strong

FKG property [Gri06, p. 33].
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Comparison inequality The proof of the next result is taken essentially unchanged from [Gri06,

Theorem 3.21].19

Proposition 36 (Comparison inequality). For 0 ⩽ p1 ⩽ p2 ⩽ 1,

φX,p1,q ⩽st φX,p2,q.

Proof. Let f : ΩX → R be an increasing function. We must show that φp1
f ⩽ φp2

f (for readability,

in this proof we’ll suppress the parameters X and q in the notation φX,p,q and ZFKP(p2, q).)

Case 1: If p1 = 0, then φp1
f = f(ω0) where ω0 ∈ ΩX is the all-closed configuration. Since

f(ω0) ⩽ f(ω) for allω ∈ ΩX, it follows that φp1
f ⩽ φp2

f.

Case 2: If p2 = 1, then φp2
f = f(ω1) where ω1 ∈ ΩX is the all-open configuration. Since

f(ω) ⩽ f(ω1) for allω ∈ ΩX, it follows that φp1
f ⩽ φp2

f.

Case 3: If 0 < p1 ⩽ p2 < 1, then

φp2
f =

1

ZFKP(p2)

∑
ω∈ΩX

f(ω)(1− p2)
c(ω)p

o(ω)
2

∣∣Zr−1(Xω, Z/qZ)
∣∣

=
1

ZFKP(p2)

∑
ω∈ΩX

f(ω)

(
1− p2
1− p1

)c(ω)(
p2
p1

)o(ω)

(1− p1)
c(ω)p

o(ω)
1

·
∣∣Zr−1(Xω, Z/qZ)

∣∣
=
ZFKP(p1)

ZFKP(p2)
φp1

fg

where

g(ω) =

(
1− p1
1− p2

)−c(ω)(
p2
p1

)o(ω)

> 0, ω ∈ ΩX.

The exponents o(·) and −c(·) are increasing, and p1 ⩽ p2 by assumption, so the function

g is increasing. Setting f = 1 in the equality above, dividing, and applying the weak FKG

property (inequality (13)),

φp2
f =

φp2
f

φp2
1

=

ZFKP(p1)
ZFKP(p2)

φp1
fg

ZFKP(p1)
ZFKP(p2)

φp1
1g

=
φp1

fg

φp1
g

⩾
φp1

f ·φp1
g

φp1
g

= φp1
f.

19For r = 1, the comparison inequalities also involve differing values q2 ⩽ q1, but the proof’s extension to r ⩾ 1 fails.
There seems to be an analogous result assuming the stronger condition of divisibility q2|q1, but we won’t pursue this
further.
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Thresholds for increasing events Recall the Bernoulli model: the family of product measures

µp(ω) = po(ω)(1− p)c(ω), p ∈ [0, 1], whereω ∈ ΩE = {0, 1}E for some fixed finite set E. It’s well-

known that the function p 7→ µp(A) is strictly increasing for every increasing event A ̸= ∅, ΩE.

Since p 7→ µp(A) is continuous, with µ0(A) = 0 and µ1(A) = 1, there exists unique p ∈ (0, 1)

such that µp(A) = 1
2 . This p is called the threshold for A. Thresholds play a key role in the theory

of random graphs: E is the edge set, and A corresponds to the presence of some structure (for

instance, a Hamiltonian cycle.) To be more accurate, random graph theory studies the asymptotic

behavior of threshold sequences for increasing events An ⊆ {0, 1}En where |E0| < |E1| < · · ·.

Thresholds in random graphs were introduced in the late 1950s [ER60] and remain an active area

of research. For instance, very recently a proof emerged for the Kahn-Kalai conjecture, a powerful

tool for estimating thresholds in the Bernoulli model [KK06; PP22].

Just like the Bernoulli model, the higher FK–Potts model has unique thresholds:

The function p 7→ φX,p,q(ω) is continuous for every ω ∈ ΩX = {0, 1}Kr(X), so the function

p 7→ φX,p,qf is continuous for every function f : ΩX → R. In particular, ifA ⊆ ΩX is an increasing

event with A ̸= ∅, ΩX, then the function α : p 7→ φX,p,q(A) is continuous, satisfies α(0) = 0 and

α(1) = 1, and is weakly increasing by proposition 36. But α is a rational function (its denominator

p 7→ ZFKP(p, q) is a polynomial), so α must be strictly increasing on [0, 1].20 Thus, there exists

unique p ∈ (0, 1) with α(p) = 1
2 .

More can be said. Theorem 35 allows us to put explicit bounds on the rate of growth of α, and

in certain cases to quantify the sharpness of the threshold. See proposition 66.

The strong FKG property has many other useful consequences that we won’t discuss [Gri06,

Ch. 2]. Here is just one more result, quoted from [Gri06, §2.5, Theorem 2.53].

Proposition 37 (Exponential steepness). For every p ∈ (0, 1) and every nonempty event A ⊆ ΩX, the

higher Fk–Potts measure (eq. (6)) satisfies

d

dp
logφX,p,q(A) ⩾

φX,p,q(HA)

p(1− p)
if A is increasing and

d

dp
logφX,p,q(A) ⩽ −

φX,p,q(HA)

p(1− p)
if A is decreasing,

20The reasoning for this is as follows. Assume that f : [0, 1] → R is a weakly increasing but not strictly increasing
function, so that f(x) = f(y) = c for some 0 ⩽ x < y ⩽ 1 and some constant c. Then f(t) = c for all t ∈ [x, y]. If also
f = p

q
for nonzero polynomials p and q then p(t) = cq(t) for all t ∈ [x, y], so p(t) − cq(t) is the zero polynomial. It

follows that f(t) = c for all c ∈ [0, 1].
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where HA is the Hamming distance function

HA(ω) := min
ω ′∈A

∣∣{Q ∈ Kr(X) | ω(Q) ̸= ω ′(Q)}
∣∣, ω ∈ ΩX.

Proof. This is a special case of [Gri06, §2.5, Theorem 2.53], which applies to every probability

measure of the form Pp(ω) = 1
Zp

(1−p)c(ω)po(ω) P(ω) where P is a probability measure with the

strong FKG property.

3.3 The Edwards–Sokal coupling

Here, we generalize the standard probabilistic coupling [ES88; Gri06, §1.4] of the Potts and FK–Potts

(“random-cluster”) models.

The (finite-volume) Edwards–Sokal coupling of the (r − 1)-cube Potts model with the r-cube

FK–Potts model is the probability measure

µX,p,q(σ,ω) :=
1

ZES(p, q)
(1− p)c(ω)po(ω)Jσ ∈ Zr−1(Xω, Z/qZ)K, (15)

(σ,ω) ∈ ΣX ×ΩX = Cr−1(X, Z/qZ)× {0, 1}Kr(X),

where again o(ω) and c(ω) are the number of open and closed r-cubes inω, respectively, ZES(p, q)

is the normalizing constant, and J·K is the indicator.

Recall that we’ve fixed p ∈ [0, 1] and β ∈ [0,∞] with p = 1− e−β (first paragraphs of section 3).

Proposition 38 (Marginals). The marginals of µX,p,q are

∑
ω∈ΩX

µX,p,q(σ,ω) = πX,β,q(σ), σ ∈ ΣX and

∑
σ∈ΣX

µX,p,q(σ,ω) = φX,p,q(ω), ω ∈ ΩX.
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Proof. If p ∈ [0, 1) then for every σ ∈ ΣX

∑
ω∈ΩX

µX,p,q(σ,ω) =
1

ZES(p, q)

∑
ω∈ΩX

(1− p)c(ω)po(ω)
∏

Q∈Kr(Xω)

JσQ = 1K (by proposition 32)

=
1

ZES(p, q)

∑
ω∈ΩX

 ∏
Q∈Kr(X)
ω(Q)=0

(1− p)


 ∏

Q∈Kr(X)
ω(Q)=1

p JσQ = 1K


=

1

ZES(p, q)

∏
Q∈Kr(X)

(
(1− p) + p JσQ = 1K

)
(via expansion)

=
1

ZES(p, q)
(1− p)|{Q∈Kr(X) |σQ ̸=1}|

=
1

ZES(p, q)
(e−β)|Kr(X)|−

∑
Q∈Kr(X)JσQ=1K

∝ 1

ZP(β, q)
e−β(−

∑
Q∈Kr(X)JσQ=1K)

= πX,β,q(σ).

If p = 1 then for every σ ∈ ΣX (continuing the same derivation from the third line)

∑
ω∈ΩX

µX,p,q(σ,ω) =
1

ZES(p, q)

∏
Q∈Kr(X)

(
(1− p) + p JσQ = 1K

)
=

1

ZES(p, q)

∏
Q∈Kr(X)

JσQ = 1K

=
1

ZES(p, q)
Jσ ∈ Zk−1(Xω, Z/qZ)K (by proposition 32)

∝ πX,β,q(σ).

For every p ∈ [0, 1] and everyω ∈ ΩX,

∑
σ∈ΣX

µX,p,q(σ,ω) =
1

ZES(p, q)
(1− p)c(ω)po(ω)

∑
σ∈ΣX

Jσ ∈ Zr−1(Xω, Z/qZ)K

=
1

ZES(p, q)
(1− p)c(ω)po(ω)

∣∣Zr−1(Xω, Z/qZ)
∣∣

∝ 1

ZFKP(p, q)
(1− p)c(ω)po(ω)

∣∣Zr−1(Xω, Z/qZ)
∣∣

= φX,p,q(ω).

Proposition 39 generalizes [Gri06, Theorem 1.10(c)].
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Proposition 39 (Partition functions). The partition functions satisfy

ZES(p, q) = e−β|Kr(X)|ZP(β, q), 0 ⩽ p < 1;

ZES(p, q) = ZFKP(p, q), 0 ⩽ p ⩽ 1.

Proof. In the derivation of the first marginal within the proof of proposition 38, the constant of

proportionality must be 1 because on each side the sum over all σ ∈ ΣX is 1. So

1

ZES(p, q)
(e−β)|Kr(X)| =

1

ZP(β, q)
.

This proves the first equality. The second equality follows likewise from the derivation of the

second marginal.

Next, we generalize [Gri06, Theorem 1.13]. Proposition 40 states that to sample from the (r−1)-

cube Potts model, we may first sample ω from the r-cube FK–Potts model, and then uniformly

select a cocycle σ compatible withω; whereas to sample from the r-cube FK–Potts model, we may

first sample σ from the (r − 1)-cube Potts model, leave closed every r-cube Q for which σQ ̸= 1,

and, for the remaining r-cubes, open each independently with probability p. Recall from section 1

that for r = 1 a uniform cocycle is an independent uniform choice of monochromatic spin for each

connected component.

Proposition 40 (Conditionals).

The first conditional of µX,p,q is

µX,p,q(σ | ω) =


Jσ ∈ Zr−1(Xω, Z/qZ)K

|Zr−1(Xω, Z/qZ)|
if 0 ⩽ p < 1 orω = ω1,

undefined if p = 1 andω ̸= ω1,

σ ∈ ΣX, ω ∈ ΩX,

whereω1 ∈ ΩX is the all-open configuration (ω1(Q) = 1 for every Q ∈ Kr(X).)

The second conditional of µX,p,q is

µX,p,q(ω | σ) = (1− p)c(ω)−v(σ)po(ω)
∏

Q∈Kr(Xω)

JσQ = 1K, σ ∈ ΣX, ω ∈ ΩX,
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where v(σ) is the number of forbidden (v for “verboten”) r-cubes,

v(σ) :=
∣∣{Q ∈ Kr(X) | σQ ̸= 1

} ∣∣, σ ∈ ΣX.

Proof. If p = 1 and ω ̸= ω1, then (1 − p)c(ω) = 0 so µX,p,q(σ,ω) = 0 for every σ ∈ ΣX, and we

can’t condition onω. Otherwise,

µX,p,q(σ | ω) =
µX,p,q(σ,ω)∑

σ∈ΣX
µX,p,q(σ,ω)

=
(1− p)c(ω)po(ω)Jσ ∈ Zr−1(Xω, Z/qZ)K∑

σ ′∈ΣX
(1− p)c(ω)po(ω)Jσ ′ ∈ Zr−1(Xω, Z/qZ)K

=
Jσ ∈ Zr−1(Xω, Z/qZ)K

|Zr−1(Xω, Z/qZ)|
, σ ∈ ΣX, ω ∈ ΩX.

For σ ∈ ΣX letΩσ ⊆ ΩX be the set of configurations compatible with σ,

Ωσ := {ω ∈ ΩX | σ ∈ Zr−1(Xω, Z/qZ)} = {ω ∈ ΩX | ω(Q) = 0 whenever σQ ̸= 1}.

The second conditional is

µX,p,q(ω | σ) =
µX,p,q(σ,ω)∑

ω ′∈ΩX
µX,p,q(σ,ω ′)

=
(1− p)c(ω)po(ω)Jσ ∈ Zr−1(Xω, Z/qZ)K∑

ω ′∈ΩX
(1− p)c(ω

′)po(ω
′)Jσ ∈ Zr−1(Xω ′ , Z/qZ)K

=
(1− p)c(ω)po(ω)

∏
Q∈Kr(Xω)JσQ = 1K∑

ω ′∈ΩX
(1− p)c(ω

′)po(ω
′)
∏

Q∈Kr(Xω ′)JσQ = 1K
(by proposition 32)

=
(1− p)c(ω)po(ω)

∏
Q∈Kr(Xω)JσQ = 1K∑

ω ′∈Ωσ
(1− p)c(ω

′)po(ω
′)

=
(1− p)c(ω)po(ω)

∏
Q∈Kr(Xω)JσQ = 1K

(1− p)v(σ)
∑

ω ′∈Ωσ
(1− p)c(ω

′)−v(σ)po(ω
′)

= (1− p)c(ω)−v(σ)po(ω)
∏

Q∈Kr(Xω)

JσQ = 1K, σ ∈ ΣX, ω ∈ ΩX,

where the last step is by expansion

∑
ω ′∈Ωσ

(1− p)c(ω
′)−v(σ)po(ω

′) =
∏

Q∈Kr(X)
σQ=1

(
(1− p) + p

)
= 1.
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3.4 Using the coupling

Recall that every spin configuration σ ∈ ΣX := Cr−1(X, Z/qZ) is formally defined to be a

character, that is, a homomorphism from the chain group Cr−1(X, Z/qZ) into C. For a chain

γ ∈ Cr−1(X, Z/qZ) we’ll writeWγ := η(γ), which is to say thatWγ is the evaluation map

Wγ : ΣX → C, σ 7→ σ(γ).

Every point in the image ofWγ is a qth root of unity. We’ll discuss the expectation ofWγ with

respect to the higher Potts measure,

⟨Wγ⟩X,β,q := πX,β,qWγ.

For r = 2 and d = 4 (lattice gauge theory), a Wilson loop is a closed directed walk in the edge

graph of X (for us a closed directed walk of length n ⩾ 0 is a sequence (v0, e0, v1, e1, . . . , vn−1,

en−1, vn) where vi are vertices, ei = {vi, vi+1} are edges, and v0 = vn; in particular, repetitions

of vertices and edges are permitted.) We associate with the walk a 1-cycle γ, in the sense that

γ picks up a ±1 coefficient on an edge each time that edge is traversed.21 In this situation, Wγ

is called a Wilson loop variable. The 1-cochain σ is meant to represent a random connection on

the discretized “principal bundle” Z4 × Z/qZ: To each edge, σ assigns an element of the gauge

group Z/qZ, viewed as a multiplicative subgroup of C (see the note on page 40 regarding the

sum and product conventions.) The value Wγ(σ) is the product of these elements along γ, that

is, the holonomy of the connection σ along the Wilson loop. Its expectation ⟨Wγ⟩X,β,q is called a

Wilson loop expectation. See [Cha19] for more details on Wilson loop variables in gauge theories.

Theorem 41 states, in particular, that the Wilson loop expectation is equal to the probability that γ

is the homological boundary of some surface in the FK–Potts model.

For r = 1 and q ⩾ 2—the Ising and Potts models—the theorem implies that for any two vertices

x and y the expected quotient of their spins (as complex qth roots of unity) coincides with the

probability that x and y are connected by some path in the FK–Potts model. For these special

cases, a number of equivalent formulations can be found in the literature. For instance, [Dum20,

Corollary 1.2.1] instead takes another inner product of the vertex spins and a different function

21For definiteness, we may take +1 on the first edge of the walk, and subsequently pick signs so that for every two
consecutive edges the boundaries cancel out on the connecting vertex. That is, arrange signs so that the resulting chain
γ is a cycle.
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relating p toβ. And [Gri06, Theorem 1.16] states that the two-point correlation function of the Potts

measure is directly proportional to the two-point connectivity function of the FK–Potts measure,

πX,β,q

(
σ(x)=σ(y)

)
− 1

q =
(
1− 1

q

)
φX,p,q(x and y are connected in Xω), x, y ∈ K0(X).

Theorem 41 for the special case of primeq appears in [DS23, Theorem 5]. See also the discussion

in [DS23, §1.2, “Why does q need to be prime?”]. Theorem 41 generalizes the result to arbitrary

integer q ⩾ 1.

We’re still in the finite-volume setting with free boundary condition. A matching result for

more general boundary conditions will be given in theorem 64.

Theorem 41 (Expectation equals probability). For every (r− 1)-chain γ ∈ Cr−1(X, Z/qZ),

⟨Wγ⟩X,β,q = φX,p,q

(
γ ∈ Br−1(Xω, Z/qZ)

)
.

Proof. Assume that either p ∈ [0, 1) and ω ∈ ΩX, or p = 1 and ω = ω1 ∈ ΩX (the all-open,

or constant 1, configuration.) In either case, the conditional expectation µX,p,q(σ | ω) is defined

(proposition 40). Let wγ(ω) ∈ C be the conditional expectation

wγ(ω) := µX,p,q

(
Wγ | ω

)
=

∑
σ∈ΣX

Wγ(σ)µX,p,q(σ | ω)

=
∑

σ∈ΣX

σ(γ)
Jσ ∈ Zr−1(Xω, Z/qZ)K∣∣Zr−1(Xω, Z/qZ)

∣∣
=

1∣∣ker δr−1
∣∣ ∑
σ∈kerδr−1

σ(γ)

=
1∣∣Ann(im∂r)

∣∣ ∑
σ∈Ann(im∂r)

σ(γ) (by fact 8)

= Jγ ∈ im∂rK (by fact 12)

= Jγ ∈ Br−1(Xω, Z/qZ)K.

By the law of total expectation, ⟨Wγ⟩X,β,q = φX,p,qwγ (noting that if p = 1 then φX,p,q(ω
1) = 1,

so this argument is valid for every p ∈ [0, 1].)

It follows that Wilson loop expectation (in finite volume, with free boundary condition) is real,

nonnegative, and increasing in β. We will eventually use this consequence to prove the analogous
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infinite-volume statement, corollary 72. See also corollary 65 for more general boundary conditions.

Corollary 42. If 0 ⩽ β1 ⩽ β2 ⩽ ∞, then

0 ⩽ ⟨Wγ⟩X,β1,q ⩽ ⟨Wγ⟩X,β2,q ⩽ 1

for every (r− 1)-chain γ.

Proof. Immediate from theorem 41 and the comparison inequality, proposition 36: The event

{
ω ∈ ΩX | γ ∈ Br−1(Xω,Z/qZ)

}
is increasing because if ω ⩽ ω ′, and if γ is the boundary of an r-chain Γ in Xω, then γ is also the

boundary of the r-chain

Γ ′ : Q 7→


Γ(Q), Q ∈ ω,

0, Q ∈ ω ′ \ω

in Xω ′ .

Notice that the variablesWγ for γ ∈ Cr−1(X, Z/qZ) are precisely the characters of ΣX (because

of the natural isomorphismη : Cr−1(X, Z/qZ) → Σ̂X —see section 2.1.) So by the Fourier transform

every complex-valued function of ΣX is a linear combination of variables Wγ. This means that

theorem 41 has more general uses (for instance, the proof of proposition 71.)
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4 Boundary conditions and the spatial Markov property

To lay the groundwork for infinite-volume measures (section 5), the definitions and results in

section 3 must be generalized from free boundary condition to arbitrary boundary conditions. But

first, some general comments on factorization are called for.

The exponential-of-Hamiltonian formula of the finite-volume higher Potts model (eq. (5)) can

be justified by the Hammersley–Clifford theorem22. Roughly speaking, this theorem states that a

positive probability measure is a product of factors determined by its underlying graph’s cliques

if and only if the measure satisfies one of several equivalent spatial Markov properties. In more

concise language, the Gibbs random fields (or Gibbs ensembles) are precisely the Markov random

fields. In our case, the underlying graph has the (r− 1)-cubes in X as its vertices, and two vertices

are adjacent if they’re both contained in the same r-cube in X. So a (maximal) clique is the set of

all (r − 1)-cubes bordering a single r-cube. Equation (5) for β < ∞ is easily seen to be a product

of nonzero factors each of which is a function of the spins within a single clique. Consequently, a

spatial Markov property holds (proposition 52.) For details on the Hammersley–Clifford theorem,

see [Lau96, Chapter 3; Gri18, §7.2; Geo11, Theorem 2.30 and the bibliographical remarks on p.

454].

The higher FK–Potts model, on the other hand, has no Gibbs factorization (by cliques) and is

therefore not a true Markov random field. However, a so-called “domain Markov property” is

often described (for the bond percolation case, r = 1), which involves modifying the measure by

identifying particular boundary vertices [Dum20, §1.2]. We generalize this property in proposi-

tion 53 and proposition 60. Loosely speaking, conditioning gives a boundary condition specified

by a family of cycles supported on the boundary (r− 1)-cubes.

4.1 Spin conditions

Take r, d, p, q, β,G, X, ΣX,ΩX as described in section 3. For readability, in this section we’ll of-

ten omit the coefficient group G = Z/qZ, writing Cr−1(X) := Cr−1(X, Z/qZ) and Zr−1(X) :=

Zr−1(X, Z/qZ) and so on. Recall our configuration spaces,ΩX = {0, 1}Kr(X) and ΣX = Cr−1(X).

22Another justification is the variational principle, according to which these measures minimize the free energy
[Geo11, pp. 308–309; Rue04, p. 4].
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Definition 43. The boundary of X is the union of all boundary (r− 1)-cubes,

∂X :=
⋃
Q∈S

Q,

where

S =
{
Q ∈ Kr−1(X) | Q ⊆ R for some R ∈ Kr \ Kr(X)

}
=

{
Q ∈ Kr−1 | Q ⊆ R for some R ∈ Kr \ Kr(X) and Q ⊆ R ′ for some R ′ ∈ Kr(X)

}
.

(Equality holds because X is a union of r-cubes.) Let Σ∂X := Cr−1(∂X) =
(
(Z/qZ)S

)̂. Denote by

ρX,∂X : ΣX → Σ∂X the coordinate projection (see definition 9 and fact 10.) △

We’ll extend all three families of measures πX,β,q, φX,p,q, and µX,p,q, by specifying the

permissible spin configurations.

Definition 44 (Spin conditions).

• A spin condition (or SC) is a nonempty subset of ΣX.

• A subgroup spin condition is a subgroup of ΣX.

• A boundary spin condition (or BSC) is the preimage of a nonempty subset of Σ∂X under ρX,∂X.

• A point boundary spin condition is the preimage of a singleton {x} ⊆ Σ∂X underρX,∂X. So a point

BSC completely specifies the spins on ∂X, and leaves the remaining spins in X unspecified.

• A cyclic boundary spin condition is a set of the form ρ−1
X,∂X(AnnCr−1(∂X) Ξ) for some Ξ ⊆

Z̃r−1(∂X) (recall from page 10 that AnnCr−1(∂X) sends subsets of Cr−1(∂X) to subgroups of

Cr−1(∂X) = Σ∂X.) By fact 7 and fact 10,

ρ−1
X,∂X(AnnCr−1(∂X) Ξ) = AnnCr−1(X) κX,∂X(Ξ)

where κX,∂X : Cr−1(∂X) → Cr−1(X) is the coordinate injection. So a cyclic BSC is the set

of all spin configurations that kill a given family of reduced (r − 1)-cycles supported on

S = Kr−1(∂X). The use of reduced homology makes a difference only for r = 1; recall that in

the non-reduced homology every 0-chain is a cycle, which is not what we want here.

• Imprint boundary spin conditions will be defined in definition 58. Roughly speaking, they are

those that can be obtained by conditioning on external r-cubes: Let X1 and X be cubical
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sets with X1 ⊆ X and pick a configuration ω2 ∈ {0, 1}Kr(X)\Kr(X
1). It will be shown in

proposition 56 that the conditional FK–Potts measure φX,p,q(· | ω2) is an FK–Potts measure

on X1 with BSC, and a BSC of this form will be called an imprint BSC for X1. △

point BSC

BSC

imprint BSC cyclic BSC SC

subgroup SC

=⇒

=⇒
=⇒

=⇒ =⇒

=⇒

Figure 3: Kinds of spin condition. All inclusions are strict.

The relationships between the various spin conditions are displayed in fig. 3. The only non-

obvious relationship is the leftmost, which is demonstrated in proposition 59. The purpose of this

rather elaborate classification scheme is to provide terminology that clarifies various statements in

this section and the next. We illustrate with some simple examples.

The free boundary condition is ξ = ΣX (it’s free in the sense that all spin configurations are

permitted.) For the free boundary condition the measures given below (eqs. (16), (17) and (18))

coincide with those given earlier (eqs. (5), (6) and (15), respectively.) The free boundary condition

is a cyclic BSC (take Ξ = ∅ in the definition of cyclic BSC), and in fact an imprint BSC (by

proposition 54), but not a point BSC (because |Σ∂X| > 1.)

In the Potts model (r = 1), the wired boundary condition is the set of all configurations that assign

the same spin to every vertex in ∂X. This is clearly a subgroup SC and a BSC. Moreover, it is a

cyclic BSC: take Ξ = {1Q − 1P ∈ C0(∂X) | Q,P ∈ K0(∂X)} (each element 1Q − 1P ∈ Ξ forces the

spins on Q and P to be equal.) Actually, taking Ξ = Z̃0(∂X) gives the same spin condition.23

Therefore, we define the wired boundary condition24 in the higher Potts model (any r) to be the

cyclic BSC with Ξ = Z̃r−1(∂X). Thus, in the gauge setting (r = 2), the wired boundary condition is

the collection of all configurations where the product of spins around each (generalized) boundary

loop is 0.

The periodic boundary condition in the case of a box,X =
⋃
Kr([−N,N]d) forN ⩾ 1, is the set of all

23For r = 1, if X is a box and d ⩾ 2 then the wired boundary condition is an imprint BSC, but this does not hold for
general X. Suppose, for instance, that X is an annulus: start with a box in d = 2 and remove a single internal vertex and
its 4 incident edges. Then there is no way to connect the internal boundary of the annulus to the external boundary (the
complement of the annulus in the plane is not path-connected.) It may be possible to modify our definition of imprint
BSCs to be more general so as to avoid such complications.

24[Cha20, p. 17] calls this the zero boundary condition.
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configurations that assign equal spins to each pair of opposing (r−1)-cubes in ∂X. This is not quite

the same as working in a d-torus, because each boundary r-cube is duplicated, or quadruplicated

(if it’s a subset of a face of [−N,N]d of codimension 2), etc. To get thed-torus, modifyX by removing

the relative interior25 of all but one r-cube from each such replicated collection, and then assign

periodic boundary condition. In either case (X or modified X) the periodic boundary condition

is a cyclic BSC: take Ξ = {1Q − 1P ∈ Cr−1(∂X) | Q,P ∈ Kr−1(∂X) belong to opposing facets of

[−N,N]d and are translates of each other along one coordinate}. It may or may not be an imprint

BSC: If r = 1 and d = 2 then it is not, but if r = 1 and d = 3 then it is (there is room to “wire up”

each opposing pair of vertices by connecting them with an edge path outside X in R3, but not in

R2, because some of the wires would have to intersect.)

Note that the more common definition of periodic boundary condition is for the modified, toroidal

version of X (as in [FV17, p. 81].) Unfortunately, this toroidal version doesn’t quite fit for us, in

the sense that it’s not a spin condition on X according to our definitions, so we won’t investigate it

further. However, it bears noting that the toroidal version is quite natural and enjoys many special

properties such as invariance under translations, rotations, and reflections. A comprehensive

study of such toroidal measures may be found in [Geo11, Part IV].

Proposition 45. The intersection of two cyclic BSCs is a cyclic BSC.

Proof. Let ξ1 = ρ−1
X,∂X(AnnΞ1) and ξ2 = ρ−1

X,∂X(AnnΞ2) where Ξ1, Ξ2 ⊆ Z̃r−1(∂X). We may

assume without loss of generality that Ξ1 and Ξ2 are subgroups of Z̃r−1(∂X). The intersection is

ξ1 ∩ ξ2 = ρ−1
X,∂X(AnnΞ1) ∩ ρ−1

X,∂X(AnnΞ2)

= ρ−1
X,∂X

(
AnnΞ1 ∩ AnnΞ2

)
= ρ−1

X,∂X

(
Ann(Ξ1 + Ξ2)

)
by fact 6.

For every spin condition ξ (that is, every nonempty ξ ⊆ ΣX) we define probability measures

πξX,β,q(σ) :=



e−βH(σ)Jσ ∈ ξK
Zξ

P(β, q)
where H(σ) = −

∑
Q∈Kr(X)

JσQ = 1K if 0 ⩽ β <∞,
Jσ ∈ Zr−1(X, Z/qZ) ∩ ξK

|Zr−1(X, Z/qZ) ∩ ξ|
if β = ∞ and Zr−1(X, Z/qZ) ∩ ξ ̸= ∅,

undefined if β = ∞ and Zr−1(X, Z/qZ) ∩ ξ = ∅,

(16)

25So as to not remove any (r− 1)-cubes.
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φξ
X,p,q(ω) :=



1

Zξ
FKP(p, q)

(1− p)c(ω)po(ω)
∣∣Zr−1(Xω, Z/qZ) ∩ ξ

∣∣
if p < 1 or Zr−1(X, Z/qZ) ∩ ξ ̸= ∅,

undefined if p = 1 and Zr−1(X, Z/qZ) ∩ ξ = ∅,

(17)

µξX,p,q(σ,ω) :=



1

Zξ
ES(p, q)

(1− p)c(ω)po(ω)Jσ ∈ Zr−1(Xω, Z/qZ) ∩ ξK

if p < 1 or Zr−1(X, Z/qZ) ∩ ξ ̸= ∅,

undefined if p = 1 and Zr−1(X, Z/qZ) ∩ ξ = ∅,

(18)

σ ∈ ΣX, ω ∈ ΩX.

These definitions are motivated by proposition 46 and proposition 47. To understand the “unde-

fined” lines, recall that X = Xω1 where ω1 is the all-open configuration. The condition Zr−1(X,

Z/qZ)∩ξ ̸= ∅ ensures that at least one permissible spin is compatible withω1, which is necessary

because µX,p,q(ω
1) = 1 when p = 1 (eq. (15)). Here Zξ

P(β, q), Z
ξ
FKP(p, q), and Zξ

ES(p, q) are nor-

malizing constants, with Zξ
P(β, q) defined only for 0 ⩽ β <∞ just like the free-boundary version

ZP(β, q) earlier.

To keep the the notation reasonably clean, we’ll often write πξX,β,q, etc., even when ξ ⊆ ΣU

for some other cubical set U ⊆ X or X ⊆ U. This is to be understood in the following sense: If

X ⊆ U then take spin condition {ρU,X(x) | x ∈ ξ} ⊆ ΣX, and if U ⊆ X then take spin condition⋃
x∈ξ ρ

−1
X,U{x} ⊆ ΣX. (Here ρU,X : ΣU → ΣX and ρX,U : ΣX → ΣU are the coordinate projections.)

These conventions are easy to remember by keeping in mind that the role of ξ is to constrain the

spins in X.

Our definitions of spin conditions, and the associated measures (16) to (18), are not standard.

The usual approach is to specify spins on additional vertices (or (r − 1)-cubes) outside X, and to

augment the Hamiltonian with boundary terms that describe interactions between andX and these

external spins (see, for example, [FV17, p. 81].) The reason we instead define boundary conditions

as subsets of spin configurations on X is that it makes definitions (16) to (18) and various theorem

statements in this section very clean. We do, however, pay a price: the definitions of Gibbs states

in section 5 become somewhat more complicated.

63



Proposition 46. For every spin condition ξ,

πξX,β,q(σ) = πX,β,q(σ | σ ∈ ξ) and

µξX,p,q(σ,ω) = µX,p,q(σ,ω | σ ∈ ξ),

unless p = 1 and Zr−1(X, Z/qZ) ∩ ξ = ∅ (in which case all four quantities are undefined.)

Proof. Immediate from the definitions of these four measures (eqs. (5), (15), (16) and (18).)

Proposition 47 (Marginals). For every spin condition ξ, the marginals of µξX,p,q are

∑
ω∈ΩX

µξX,p,q(σ,ω) = πξX,β,q(σ), σ ∈ ΣX, and

∑
σ∈ΣX

µξX,p,q(σ,ω) = φξ
X,p,q(ω), ω ∈ ΩX,

unless p = 1 and Zr−1(X, Z/qZ) ∩ ξ = ∅ (in which case all these terms are undefined.)

Proof. Follow the proof for free boundary condition (proposition 38), carrying along a factor of

Jσ ∈ ξK.

Alternate proof for first marginal. Start with proposition 38, condition on σ ∈ ξ, and apply proposi-

tion 46.

Proposition 48 (Partition functions). For every spin condition ξ, the partition functions satisfy

Zξ
ES(p, q) = e−β|Kr(X)|Zξ

P(β, q) = Zξ
FKP(p, q) if 0 ⩽ p < 1

and

Zξ
ES(p, q) = Zξ

FKP(p, q) if p = 1 and Zr−1(X, Z/qZ) ∩ ξ ̸= ∅.

(Recall that if p = 1 then Zξ
P(β, q) is undefined, and if p = 1 and Zr−1(X, Z/qZ)∩ ξ = ∅ then Zξ

ES(p, q)

and Zξ
FKP(p, q) are also undefined.)

Proof. Argue as in the proof of proposition 39.

When a spin condition ξ is involved, the conditional measures work essentially the same way as

before (see proposition 40 and the paragraph that precedes it), except now when picking a uniform

cocycle σ compatible withωwe must pick among only those that belong to ξ.
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Proposition 49 (Conditionals). Let ξ be a spin condition.

The first conditional of µξX,p,q is

µξX,p,q(σ | ω) =



Jσ ∈ Zr−1(Xω, Z/qZ) ∩ ξK
|Zr−1(Xω, Z/qZ) ∩ ξ|

if
(
0 ⩽ p < 1 orω = ω1

)
and Zr−1(Xω, Z/qZ) ∩ ξ ̸= ∅,

undefined if p = 1 andω ̸= ω1,

undefined if Zr−1(Xω, Z/qZ) ∩ ξ = ∅,

σ ∈ ΣX, ω ∈ ΩX.

whereω1 ∈ ΩX is the all-open configuration (ω1(Q) = 1 for every Q ∈ Kr(X).)

The second conditional of µξX,p,q is

µξX,p,q(ω | σ) =


(1− p)c(ω)−v(σ)po(ω)

∏
Q∈Kr(Xω)

JσQ = 1K if σ ∈ ξ,

undefined if σ ̸∈ ξ,

σ ∈ ΣX, ω ∈ ΩX,

where

v(σ) :=
∣∣{Q ∈ Kr(X) | σQ ̸= 1

} ∣∣, σ ∈ ΣX.

Proof. For µξX,p,q(σ | ω): If Zr−1(Xω, Z/qZ) ∩ ξ = ∅, then µξX,p,q(σ,ω) = 0 for every σ ∈ ΣX.

Otherwise, follow the proof for free boundary condition (proposition 40).

For µξX,p,q(ω | σ): If σ ̸∈ ξ then µξX,p,q(σ,ω) = 0 for every ω ∈ ΩX. Otherwise, follow the

proof for free boundary condition.

4.2 Spatial Markov properties

We’ll examine several spatial Markov properties, starting with the higher Edwards–Sokal coupling

itself (proposition 51.) Taking marginals will reveal the corresponding properties of the higher

Potts and higher FK–Potts models (propositions 52 and 53.)

For the next few pages, we’ll use the following notation.

Notation 50. Assume that X is the union of at least 2 r-cubes. Partition the family of r-cubes

in X into n ⩾ 2 disjoint nonempty subfamilies, Kr(X) =
⋃
· 1⩽i⩽nAi. Write Xi =

⋃
Q∈Ai

Q for

1 ⩽ i ⩽ n, so that X =
⋃

i X
i (but this union is not necessarily disjoint, because distinct r-cubes
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may have nonempty intersection.) The interface of the partition is

E :=
{
B ∈ Kr−1(X) | B ⊆ Xi ∩ Xj for some distinct i, j

}
.

That is, the interface consists of all (r − 1)-cubes that are faces of r-cubes from at least two Ai’s.

The collection of (r− 1)-cubes internal to Ai is

Bi :=
{
B ∈ Kr−1(X) | B ⊆ Xi

}
\ E = Kr−1(X

i) \ E for 1 ⩽ i ⩽ n.

Thus, the partition (Ai) of Kr(X) induces a partition Kr−1(X) = E ∪·
⋃
· 1⩽i⩽nBi (but some of the

sets E, Bi may be empty.) Let

Σi :=
(
(Z/qZ)Bi

)̂ and Ωi := {0, 1}Ai for 1 ⩽ i ⩽ n,

ΣE :=
(
(Z/qZ)E

)̂.
Identify ΣX with ΣE ×

∏
i Σi and ΣXi with ΣE × Σi, and also ΩX with

∏
iΩi. The coordinate

projection maps will be denoted

ρΩ,i : ΩX → Ωi,

ρX,Xi : ΣX → ΣXi (= ΣE × Σi),

ρE : ΣX → ΣE. △

Here’s an example for r = 1: Let X be the union of all edges in the box [−N,N]d ⊆ Rd; let A1

be the family of all edges in a smaller box [−M,M]d, including the boundary edges26; and let A2

be the family of all edges that are in X but not in A1. Then E is the collection of vertices lying on

the boundary of the smaller box, and B1 and B2 are the collection of vertices in the interior and

exterior of the smaller box, respectively.

Proposition 51 (Spatial Markov property of Edwards–Sokal coupling).

If ξ = ρ−1
E {σ ′

E} ⊆ ΣX for some σ ′
E ∈ ΣE, then

µξX,p,q(σ,ω) =
∏

1⩽i⩽n

µξ
Xi,p,q

(
ρX,Xi(σ), ρΩ,i(ω)

)
.

26Those edges that are subsets of bd[−M,M]d, where bd is the boundary operator for the usual metric on Rd.
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In particular, with respect to µX,p,q, the n σ-algebras generated by the factors Σi × Ωi are mutually

independent conditional on the σ-algebra generated by the factor ΣE.

Proof. Identify each (σ,ω) ∈ ΣX ×ΩX with (σ1,ω1, . . . , σn,ωn, σE) ∈
(∏

1⩽i⩽n Σi ×Ωi

)
× ΣE.

By proposition 32, for every (σ,ω) ∈ ΣX ×ΩX,

µX,p,q(σ,ω) =
1

ZES(X, p, q)
(1− p)c(ω)po(ω)Jσ ∈ Zr−1(Xω, Z/qZ)K

=
1

ZES(X, p, q)

 ∏
1⩽i⩽n

(1− p)c(ωi)po(ωi)

 ∏
Q∈Kr(Xω)

JσQ = 1K

=
1

ZES(X, p, q)

∏
1⩽i⩽n

(1− p)c(ωi)po(ωi)
∏

Q∈Ai
ωi(Q)=1

JσQ = 1K

 .
Each factor JσQ = 1K is a function of σi and σE because all (r− 1)-cubes borderingQ ∈ Ai belong

to either Bi or E. In fact, we may write this as

µX,p,q(σ,ω) =

∏
1⩽i⩽n ZES(X

i, p, q)

ZES(X, p, q)

∏
1⩽i⩽n

µXi,p,q(σi × σE, ωi), (σ,ω) ∈ ΣX ×ΩX.

Now fix σ ′
E ∈ ΣE and let ξ = {σ ′

E} ×
∏

i Σi ×Ωi ⊆ ΣX (that is, the spin condition ξ specifies the

spins on the interfaceE but doesn’t restrict spins on the remaining (r−1)-cubes.) By proposition 46,

µξX,p,q(σ,ω) = JσE = σ ′
EKµX,p,q(σ1, . . . , σn,ω | σE)

∝ JσE = σ ′
EKµX,p,q(σ,ω)

∝ JσE = σ ′
EK

∏
1⩽i⩽n

µXi,p,q(σi × σE, ωi)

=
∏

1⩽i⩽n

µξ
Xi,p,q

(σi × σE, ωi).

Each factor in this product serves as a probability measure on Σi × Ωi, so the net factor of

proportionality is 1; that is,

µξX,p,q(σ,ω) =
∏

1⩽i⩽n

µξ
Xi,p,q

(σi × σE, ωi).

A comment on proposition 51: The Edwards–Sokal coupling (eq. (15)) is a Gibbs random field
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in the sense that its probability mass function is a product of locally-determined factors. So it must

be a Markov random field (this is the easy direction of the Hammersley–Clifford theorem; see

[Lau96, Proposition 3.8].) To wit, construct an undirected graph with vertex set Kr(X) ∪Kr−1(X),

where for each r-cube Q there’s an edge from Q to each of its boundary (r − 1)-cubes, and edge

between every pair ofQ’s boundary (r− 1)-cubes. With respect to this graph, the measure µX,p,q

has the global Markov property in the sense of [Lau96, §3.2]: If A,B, S are disjoint vertex sets

such that every path from A to B passes through S, then A and B are independent conditional

on S. Proposition 51 does not capture the full strength of this statement, as it conditions only on

(r− 1)-cubes. It seems futile to seek an analogous theorem for conditioning on a family of r-cubes

because such a family cannot separate the graph. This also explains why the higher Potts model

enjoys the spatial Markov property whereas the higher FK–Potts model does not, as we’ll see in

propositions 52 and 53.

Proposition 52 (Spatial Markov property of higher Potts model). With respect to πX,β,q, the n σ-

algebras generated by the factors Σi are mutually independent conditional on the σ-algebra generated by the

factor ΣE.

Proof. Follows directly from proposition 51 and proposition 47.

The phrase hidden Markov below is meant to suggest at independence conditional on the spins,

which aren’t explicitly present in the higher FK–Potts model but instead emerge as a new spin

condition ξ on the interfacial (r− 1)-cubes.

Proposition 53 (Spatial hidden Markov property of higher FK–Potts model). Forn = 2 in notation 50,

φX,p,q(ω1,ω2) =
∑

ξ={σE}⊆ΣE

πX,p,q(ρ
−1
E ξ) φξ

X1,p,q
(ω1) φ

ξ
X2,p,q

(ω2), (ω1,ω2) ∈ Ω1 ×Ω2,

where the sum is over all singletons containing an element of ΣE.

Proof. Omitting everywhere the subscript “p, q” for clarity,

φX(ω1,ω2) =
∑

σ∈ΣX

µX(σ,ω1,ω2)

=
∑

σ∈ΣX

∑
ξ={σE}⊆ΣE

πX(ρ
−1
E ξ) µX(σ,ω1,ω2 | σ ∈ ρ−1

E ξ) (by proposition 38)

=
∑

ξ={σE}⊆ΣE

πX(ρ
−1
E ξ)

∑
σ∈ΣX

µξX(σ,ω1,ω2) (by proposition 46)
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=
∑

ξ={σE}⊆ΣE

πX(ρ
−1
E ξ)

∑
σ ′
E∈ΣE

σ1∈Σ1
σ2∈Σ2

µξ
X1(σ1, σ

′
E,ω1)µ

ξ
X2(σ2, σ

′
E,ω2) (by proposition 51)

=
∑

ξ={σE}⊆ΣE

πX(ρ
−1
E ξ)

∑
σ1∈Σ1
σ2∈Σ2

µξ
X1(σ1, σE,ω1)µ

ξ
X2(σ2, σE,ω2) (all other terms vanish)

=
∑

ξ={σE}⊆ΣE

πX(ρ
−1
E ξ)

 ∑
σ ′
E∈ΣE

σ1∈Σ1

µξ
X1(σ1, σ

′
E,ω1)


 ∑

σ ′
E∈ΣE

σ2∈Σ2

µξ
X2(σ2, σ

′
E,ω2)


=

∑
ξ={σE}⊆ΣE

πX(ρ
−1
E ξ)φξ

X1(ω1)φ
ξ
X2(ω2) (by proposition 47),

ω1 ∈ Ω1, ω2 ∈ Ω2.

Notice that for E = ∅, which is to say when X1 and X2 don’t share any (r − 1)-cubes, proposi-

tion 53 reduces to independence (because ΣE is the trivial group, so the sum has only one term):

φX,p,q(ω1,ω2) = φX1,p,q(ω1) φX2,p,q(ω2), (ω1,ω2) ∈ Ω1 ×Ω2.

4.3 Conditioning in the higher FK–Potts model

Conditioning in the random-cluster model (r = 1) is described in [Gri06, Lemma 4.13]. Our aim

is to generalize this result. In the prototypical case, X is a box containing a smaller box X1, and

we condition on the (open or closed status of the) r-cubes outside X1, that is, the elements of

Kr(X) \ Kr(X
1). Proposition 54 describes what happens when all external r-cubes are closed. It

is a special case of proposition 56 and proposition 60, but a standalone proof is included to aid

comprehension.

Proposition 54. For n = 2 in notation 50, and p ∈ [0, 1),

φX,p,q(ω1 | ω2 = 0) = φX1,p,q(ω1), (ω1,ω2) ∈ Ω1 ×Ω2.

Proof. For everyω1 ∈ Ω1,

φX,p,q(ω1 | ω2 = 0) ∝ φX,p,q(ω1, 0)

∝ (1− p)c(ω1)+|A2|po(ω1)+0
∣∣Zr−1(X(ω1,0))

∣∣
∝ (1− p)c(ω1)po(ω1)

∣∣Zr−1(X(ω1,0))
∣∣
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= (1− p)c(ω1)po(ω1)
∑

(σE,σ1,σ2)
∈ ΣE×Σ1×Σ2

J(σ1, σ2, σE) ∈ Zr−1(X(ω1,0))K

= (1− p)c(ω1)po(ω1)

·
∑

(σE,σ1,σ2)
∈ ΣE×Σ1×Σ2

J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
0)K

= (1− p)c(ω1)po(ω1)
∑

(σE,σ1,σ2)
∈ ΣE×Σ1×Σ2

J(σ1, σE) ∈ Zr−1(X1
ω1

)K

= (1− p)c(ω1)po(ω1)
∣∣Zr−1(X1

ω1
)
∣∣ |Σ2|

∝ (1− p)c(ω1)po(ω1)
∣∣Zr−1(X1

ω1
)
∣∣

∝ φX1,p,q(ω1).

In the sixth line, we used the fact that every configuration (σ2, σE) ∈ (Σ2 × ΣE) = ΣX2 is a cocycle

in the cubical set X2
ω2

= X2
0 which has no r-cubes.

Here is a simple consequence that we’ll use in the proof of proposition 71.

Corollary 55. For n = 2 in notation 50, take two increasing events E1 ⊆ Ω1 and E ⊆ Ω1 × Ω2 that

satisfy

ω1 ∈ E1 =⇒ (ω1, 0) ∈ E.

Then their probabilities satisfy

φX1,p,q(E1) ⩽ φX,p,q(E).

Proof. Assume p ∈ (0, 1) (the cases p = 0, 1 are trivial.) By conditioning,

φX,p,q(E) =
∑

ω ′
2∈Ω2

φX,p,q(ω
′
2)φX,p,q(E | ω ′

2)

⩾
∑

ω ′
2∈Ω2

φX,p,q(ω
′
2)φX,p,q(E | ω2 = 0) (by monotonicity: theorem 35)

= φX,p,q(E | ω2 = 0)

= φX,p,q((ω1, 0) ∈ E | ω2 = 0)

⩾ φX,p,q(ω1 ∈ E1 | ω2 = 0) (by assumption on E and E1)

= φX1,p,q(E1) (by proposition 54.)
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Now, a more general result. Again, the easiest scenario is a box X = Kr([−N,N]d) containing

a strictly smaller box X1 = Kr([−M,M]d).

Proposition 56 (Conditioning in the higher FK–Potts model with free boundary condition). For

n = 2 in notation 50, and p ∈ (0, 1),

φX,p,q(ω1 | ω2) = φξ ′

X1,p,q
(ω1), (ω1,ω2) ∈ Ω1 ×Ω2

where ξ ′ ⊆ ΣX1 is a spin condition for X1 given by

ξ ′ = {(σ1, σE) ∈ Σ1 × ΣE | (σ2, σE) ∈ Zr−1(X2
ω2

) for some σ2 ∈ Σ2}

= ρX,X1

(
ρ−1
X,X2

[
Zr−1

(
X2
ω2

) ])
.

Proof. Observe that for everyσ = (σE, σ1, σ2) ∈ ΣE×Σ1×Σ2 = ΣX andω = (ω1,ω2) ∈ Ω1×Ω2 =

ΩX,

(σ1, σ2, σE) ∈ Zr−1(Xω) ⇐⇒
∏

Q∈Kr(Xω)

JσQ = 1K (by proposition 32)

⇐⇒

 ∏
Q∈Kr(X1

ω1
)

JσQ = 1K


 ∏

Q∈Kr(X2
ω2

)

JσQ = 1K


⇐⇒

 ∏
Q∈Kr(X1

ω1
)

J(σ1, σE)Q = 1K


 ∏

Q∈Kr(X2
ω2

)

J(σ2, σE)Q = 1K


⇐⇒ (σ1, σE) ∈ Zr−1(X1

ω1
) and (σ2, σE) ∈ Zr−1(X2

ω2
)

or, equivalently,

J(σ1, σ2, σE) ∈ Zr−1(Xω)K = J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
ω2

)K.

Takeω2 ∈ Ω2. Conditioning onω2 gives

φX,p,q(ω1 | ω2) ∝ φX,p,q(ω1,ω2)

∝ (1− p)c(ω1)+c(ω2)po(ω1)+o(ω2)
∣∣Zr−1(Xω)

∣∣ whereω = (ω1,ω2) ∈ ΩX

∝ (1− p)c(ω1)po(ω1)
∣∣Zr−1(Xω)

∣∣
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= (1− p)c(ω1)po(ω1)
∑

σE∈ΣE
σ1∈Σ1
σ2∈Σ2

J(σ1, σ2, σE) ∈ Zr−1(Xω)K

= (1− p)c(ω1)po(ω1)
∑

σE∈ΣE
σ1∈Σ1
σ2∈Σ2

J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
ω2

)K

= (1− p)c(ω1)po(ω1)

·
∑

σE∈ΣE
σ1∈Σ1

J(σ1, σE) ∈ Zr−1(X1
ω1

)K
∑

σ2∈Σ2

J(σ2, σE) ∈ Zr−1(X2
ω2

)K

 , ω1 ∈ Ω1.

To simplify this expression, we argue that the inner sum always evaluates to either 0 or a positive

constant s that is independent of σE and σ1. To see why this is so, let ρ : Zr−1(X2
ω2

) → ΣE be

the coordinate projection (to be more precise, ρ is the restriction to Zr−1(X2
ω2

) ⊆ Σ2 × ΣE of the

projection Σ2×ΣE → ΣE.) The inner sum evaluates to
∣∣ρ−1{σE}

∣∣. But ρ is a group homomorphism,

and by the first isomorphism theorem all nonempty preimages of singletons have equal number

of elements. Let s be this common number of elements (s is a function ofω2 but not of σE.) Thus,

for every σE ∈ ΣE,

∑
σ2∈Σ2

J(σ2, σE) ∈ Zr−1(X2
ω2

)K = s J(σ2, σE) ∈ Zr−1(X2
ω2

) for some σ2 ∈ Σ2K.

(The two sides are either both equal to s or both equal to 0, depending on σE.) Pulling out the

common factor s gives

φX,p,q(ω1 | ω2) ∝ (1− p)c(ω1)po(ω1)

·
∑

σE∈ΣE
σ1∈Σ1

J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
ω2

) for some σ2 ∈ Σ2K

= (1− p)c(ω1)po(ω1)
∑

σE∈ΣE
σ1∈Σ1

J(σ1, σE) ∈ Zr−1(X1
ω1

) ∩ ξ ′K

= (1− p)c(ω1)po(ω1)
∣∣Zr−1(X1

ω1
) ∩ ξ ′

∣∣
∝ φξ ′

X1,p,q
(ω1), ω1 ∈ Ω1,

where ξ ′ is as described in the theorem statement above.

Here’s a simple illustration of proposition 56. It also serves as a prototypical example for
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proposition 59.

Example 57. Take d ⩾ 3 and r = 2. Let X be the union of the 6 faces (plaquettes) of some 3-cube.

Let A1 contain a single one of these plaquettes, and A2 the remaining 5 plaquettes. Then Σ1 is

trivial (there are no edges internal to the single plaquette in A1) and ΣE is the configuration space

of the spins on the 4 edges of the plaquette in A1. Letω2 be the all-open configuration onΩ2 (that

is, condition on each of the 5 plaquettes in A2 being open.)

If (σ2, σE) ∈ Zr−1(X2
ω2

) then σE ∈ Zr−1(X1) (because the plaquettes form a closed surface, so

that if the spins around the boundaries of 5 of them have sum 0 then the same is true of the 6th

plaquette.) Conversely, it’s not hard to see that for every σE ∈ Zr−1(X1) there exists σ2 ∈ Σ2 such

that (σ2, σE) ∈ Zr−1(X2
ω2

). So ξ ′ is the set of all spin configurations on the edges incident to the

single plaquette in A1 such that the sum of the 4 spins is 0. △

We can now define imprint BSCs: those that can be obtained by starting with free boundary

condition on some larger cubical set and then conditioning as in proposition 56.

Definition 58. Let X1 be a nonempty union of r-cubes. An imprint boundary spin condition (or

imprint BSC) for X1 is a set ξ ′ ⊆ ΣX1 that satisfies the following condition. There exists some union

of r-cubes27 X ⊋ X1, some partition of the r-cubes in X into 2 disjoint nonempty subfamilies A1 and

A2 (that is, taking n = 2 in notation 50), with X1 =
⋃

Q∈A1
Q, and some configuration ω2 ∈ Ω2,

such that

ξ ′ = ρX,X1

(
ρ−1
X,X2

[
Zr−1

(
X2
ω2

) ])
(where X2 =

⋃
Q∈A2

Q and other symbols as described in notation 50.) △

For r = 1, there’s a well-known description of imprint BSCs, often referred to as the domain

Markov property28 [Dum20, §1.2]: Every imprint BSC may be identified with a partition of E. Within

each block of the partition, all spins are required to be the same. There might be an analogous

topological characterization of imprint BSCs for general r, but we will not investigate this.

Proposition 59. Every imprint BSC is a cyclic BSC (that is, in proposition 56, ξ ′ is a cyclic BSC for X1.)

27It would not weaken this definition to take weak inclusion X ⊇ X1 instead, because the free spin condition ξ ′ = ΣX1

can be obtained by conditioning on an all-closed external configuration as in proposition 54.
28This terminology is questionable because there is no true conditional independence—see proposition 53.
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Proof. Letω2 and ξ ′ be as in proposition 56. For this proof, we’ll use the coordinate projections

ρ := ρX2,E : Σ2 × ΣE → ΣE,

ρ ′ := ρX1,E : Σ1 × ΣE → ΣE.

In fact 7, take α to be the coordinate injection κ : (Z/qZ)E → (Z/qZ)E×B2 . Its dual map is κ∗ = ρ

(fact 10). The composition ρ ◦ ρ−1 is the identity, so the second part of fact 7 says

Ann(Z/qZ)E ◦κ−1 = ρ ◦ Ann(Z/qZ)E×B2 . (∗)

By fact 8,

Zr−1(X2
ω2

) = ker δr−1 = ker∂∗r = Ann(Z/qZ)E×B2 im∂r = Ann(Z/qZ)E×B2 Br−1(X
2
ω2

).

Applying ρ and combining with (∗) gives

ρ
(
Zr−1(X2

ω2
)
)

= ρ
(

Ann(Z/qZ)E×B2 Br−1(X
2
ω2

)
)

= Ann(Z/qZ)E κ
−1
(
Br−1(X

2
ω2

)
)
.

Therefore,

ξ ′ = {(σ1, σE) ∈ Σ1 × ΣE | (σ2, σE) ∈ Zr−1(X2
ω2

) for some σ2 ∈ Σ2}

= (ρ ′)−1
(
ρ
(
Zr−1(X2

ω2
)
))

= (ρ ′)−1 Ann(Z/qZ)E κ
−1
(
Br−1(X

2
ω2

)
)
.

Recall that Br−1(X
2
ω2

) = im∂r = im ∂̃r = B̃r−1(X
2
ω2

) because r ⩾ 1. Take any b ∈ (Z/qZ)E such

that

κ(b) ∈ Br−1(X
2
ω2

) = B̃r−1(X
2
ω2

) ⊆ Z̃r−1(X
2
ω2

)

(every reduced boundary is a reduced cycle.29) Then b ∈ Z̃r−1

(⋃
E∈E E

)
, because the extra 0

coefficients in κ(b) don’t contribute anything to the coefficients on (r − 2)-cubes after applying

∂̃r−1. This proves that κ−1
(
Br−1(X

2
ω2

)
)
⊆ Z̃r−1

(⋃
E∈E E

)
. It follows that ξ ′ is a cyclic BSC for

X1. To be explicit: Take Ξ = κ̄κ−1Br−1(X
2
ω2

) in the definition of cyclic BSC, where κ̄ : (Z/qZ)E →

29But, if r = 1, not every (r − 1)-cycle is a reduced (r − 1)-cycle, which is the whole point of using the reduced
homology here.
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(Z/qZ)Kr−1(∂X
1) = Cr−1(∂X

1) is the coordinate injection (this follows from the first part of fact 7

with α = κ̄.)

Actually, we’ve proved slightly more: ξ ′ is induced by a family of cycles in
⋃

E∈E E, which may

be a strict subset of ∂X.

The converse to proposition 59 does not hold in general: It’s not true that every cyclic BSC is an

imprint BSC. As a counterexample, take the Potts model with r = 1 and q = 4, and let X be a single

1-cube; that is, an edge joining two vertices v and w. In the definition of cyclic BSC let Ξ = {c}

where c = 2v + 2w. Then ξ is the set of all vertex spin configurations where the sum of spins has

even parity (there are 8 such configurations.) But any imprint BSC will either leave both spins free

or will require both spins to be equal (so an imprint BSC will have either 4 or 16 configurations.)

Proposition 56 described conditioning starting with free boundary condition, but we can be

somewhat more general.

Proposition 60 (Conditioning in the higher FK–Potts model). Taken = 2 in notation 50 andp ∈ (0, 1).

Let ξ be a subgroup spin condition on X that has the form (ρX,X2)−1(ξ2) for some subgroup ξ2 ⊆ ΣX2

(meaning that ξ is permitted to restrict spins in B2 and E but not in B1.) Then

φξ
X,p,q(ω1 | ω2) = φξ ′

X1,p,q
(ω1), (ω1,ω2) ∈ Ω1 ×Ω2

where ξ ′ ⊆ ΣX1 is a subgroup boundary spin condition for X1 given by

ξ ′ =
{
(σ1, σE) ∈ Σ1 × ΣE

∣∣ (σ2, σE) ∈ Zr−1(X2
ω2

) ∩ ξ2 for some σ2 ∈ Σ2

}
= ρX,X1

(
ρ−1
X,X2

[
Zr−1

(
X2
ω2

)
∩ ξ2

])
= ρX,X1

(
ρ−1
X,X2

[
Zr−1

(
X2
ω2

) ]
∩ ξ
)
.

Proof. Takeω2 ∈ Ω2. Similarly to the proof of proposition 56, conditioning onω2 gives

φξ
X,p,q(ω1 | ω2) ∝ φξ

X,p,q(ω1,ω2)

∝ (1− p)c(ω1)+c(ω2)po(ω1)+o(ω2)
∣∣Zr−1(X(ω1,ω2)) ∩ ξ

∣∣
∝ (1− p)c(ω1)po(ω1)

∣∣Zr−1(X(ω1,ω2)) ∩ ξ
∣∣
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= (1− p)c(ω1)po(ω1)

·
∑

σE∈ΣE
σ1∈Σ1
σ2∈Σ2

J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
ω2

)K J(σ1, σ2, σE) ∈ ξK

= (1− p)c(ω1)po(ω1)

·
∑

σE∈ΣE
σ1∈Σ1
σ2∈Σ2

J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
ω2

) ∩ ξ2K

= (1− p)c(ω1)po(ω1)

·
∑

σE∈ΣE
σ1∈Σ1

J(σ1, σE) ∈ Zr−1(X1
ω1

)K
∑

σ2∈Σ2

J(σ2, σE) ∈ Zr−1(X2
ω2

) ∩ ξ2K

 , ω1 ∈ Ω1.

Next, argue as in the proof of proposition 56, but with the group Zr−1(X2
ω2

) ∩ ξ2 in place of

Zr−1(X2
ω2

). We arrive at

φξ
X,p,q(ω1 | ω2) ∝ (1− p)c(ω1)po(ω1)

·
∑

σE∈ΣE
σ1∈Σ1

J(σ1, σE) ∈ Zr−1(X1
ω1

)K J(σ2, σE) ∈ Zr−1(X2
ω2

) ∩ ξ2 for some σ2 ∈ Σ2K

= (1− p)c(ω1)po(ω1)
∑

σE∈ΣE
σ1∈Σ1

J(σ1, σE) ∈ Zr−1(X1
ω1

) ∩ ξ ′K

= (1− p)c(ω1)po(ω1)
∣∣Zr−1(X1

ω1
) ∩ ξ ′

∣∣
∝ φξ ′

X1,p,q
(ω1), ω1 ∈ Ω1,

where ξ ′ is as described in the theorem statement above.

The projections are group homomorphisms, so ξ ′ is a subgroup of ΣX1 . Moreover, ξ ′ restricts

only the ΣE component, not the Σ1 component, and every (r− 1)-cube E ∈ E satisfies E ⊆ ∂X1, so

ξ ′ is a boundary spin condition for ΣX2 .

4.4 Further results

Here, we generalize several statements from sections 3.2 and 3.4. Proposition 61 (which generalizes

the first part of proposition 33) is needed for the proof of theorem 62.

Proposition 61 (Counting cocycles, with spin condition). Let ξ be a subgroup spin condition. The
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dependence factor in eq. (17) satisfies

∣∣Zr−1(Xω, Z/qZ) ∩ ξ
∣∣ =

|Cr−1(X, Z/qZ)|∣∣Br−1(Xω, Z/qZ) + Ann−1 ξ
∣∣ , ω ∈ ΩX

where Ann−1 ξ = η−1 Ann ξ ⊆ Cr−1(X, Z/qZ) = Cr−1(Xω, Z/qZ) (see facts 5 and 6, taking

H = Ann−1 ξ in fact 5.)

Proof. In this proof, the boundary (∂r) and coboundary (δr−1) maps will be those of the cubical set

Xω, and Ann will be the induced bĳection from the collection of subgroups of Cr−1(Xω,Z/qZ)

to the collection of subgroups of ΣX = Cr−1(Xω,Z/qZ) (see fact 6, noting in particular that

ξ = Ann Ann−1 ξ.) For everyω ∈ ΩX,

|Zr−1(Xω, Z/qZ) ∩ ξ| = |ker δr−1 ∩ ξ|

= |ker∂∗r ∩ ξ|

=
∣∣Ann(im∂r) ∩ Ann Ann−1 ξ

∣∣ (by fact 8)

=
∣∣Ann(im∂r + Ann−1 ξ)

∣∣ (by fact 6)

=
|Cr−1(Xω, Z/qZ)|∣∣ im∂r + Ann−1 ξ

∣∣ (by fact 4)

=
|Cr−1(Xω, Z/qZ)|∣∣Br−1(Xω, Z/qZ) + Ann−1 ξ

∣∣
=

|Cr−1(X, Z/qZ)|∣∣Br−1(Xω, Z/qZ) + Ann−1 ξ
∣∣ (by eq. (11).)

Theorem 62 generalizes theorem 35. Observe that if ξ is a subgroup of ΣX then φξ
X,p,q is

(strictly) positive when p ∈ (0, 1), because Zr−1(Xω, Z/qZ) ∩ ξ ̸= ∅ for every ω ∈ ΩX. So

theorem 34 applies to φξ
X,p,q just as it does to φX,p,q.

Theorem 62 (Strong FKG, with spin condition). For every p ∈ (0, 1) and every subgroup spin condition

ξ, the higher FK–Potts measure (17) has the strong FKG property.

Proof. Follow the proof of theorem 35, except now use the cocycle count formula from proposi-

tion 61, and at the end apply the more general result from fact 14 taking D = Ann−1 ξ.

Proposition 63 generalizes proposition 36.
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Proposition 63 (Comparison inequality, with spin condition). For every subgroup spin condition ξ, if

0 ⩽ p1 ⩽ p2 ⩽ 1 then

φξ
X,p1,q

⩽st φ
ξ
X,p2,q

.

Proof. Follow the proof of proposition 36, replacing |Zr−1(Xω, Z/qZ)| with |Zr−1(Xω, Z/qZ) ∩

ξ|.

Recall the notationWγ from section 3.4. Let ⟨Wγ⟩ξX,β,q := πξX,β,qWγ. Theorem 64 generalizes

theorem 41.

Theorem 64 (Expectation equals probability, with spin condition). For every subgroup spin condition

ξ and every (r− 1)-chain γ ∈ Cr−1(X, Z/qZ),

⟨Wγ⟩ξX,β,q = φξ
X,p,q

(
γ ∈ Br−1(Xω,Z/qZ) + Ann−1 ξ

)
.

Proof. We first consider the case 0 ⩽ p < 1. Let ξ ′ = Ann−1 ξ. The set ξ ′ is a subgroup of

Cr−1(X, Z/qZ) (= Cr−1(Xω, Z/qZ)) (see fact 6.) Define wγ to be the conditional expectation

wγ(ω) := µξX,p,q

(
Wγ | ω

)
=

∑
σ∈ΣX

Wγ(σ)µ
ξ
X,p,q(σ | ω)

=
∑

σ∈ΣX

σ(γ)
Jσ ∈ Zr−1(Xω, Z/qZ) ∩ ξK∣∣Zr−1(Xω, Z/qZ) ∩ ξ

∣∣
=

1∣∣ξ ∩ ker δr−1
∣∣ ∑
σ∈ξ∩kerδr−1

σ(γ)

=
1∣∣ξ ∩ Ann(im∂r)

∣∣ ∑
σ∈ξ∩Ann(im∂r)

σ(γ) (by fact 8)

=
1∣∣Ann(im∂r + ξ ′)

∣∣ ∑
σ∈Ann(im∂r+ξ ′)

σ(γ) (by fact 6)

= Jγ ∈ im∂r + ξ
′K (by fact 12)

= Jγ ∈ Br−1(Xω, Z/qZ) + Ann−1 ξK, ω ∈ ΩX.

(This is valid for all ω ∈ ΩX, because ξ is a subgroup and therefore Zr−1(Xω, Z/qZ) ∩ ξ ̸= ∅.)

Thus, by the law of total expectation,

⟨Wγ⟩ξX,β,q = φξ
X,p,qwγ = φξ

X,p,q

(
γ ∈ Br−1(Xω,Z/qZ) + Ann−1 ξ

)
.
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That takes care of 0 ⩽ p < 1. If p = 1 thenφξ
X,p,q(ω

1) = 1 (whereω1 is the all-open configuration),

and the above derivation is valid forω = ω1. Thus, the equality of functions

wγ(ω) = Jγ ∈ Br−1(Xω, Z/qZ) + Ann−1 ξK.

holds with probability 1, and we may take the expectation on both sides just as before.

A simple example for theorem 64 is the Ising model (spins 0 and 1) with wired boundary

condition, that is, ξ is the set of all spin configurations that assign equal spin to each boundary

vertex. The group Ann−1 ξ consists of all 1-chains in which an even number of boundary vertices

have spin 1. Let γ = 1v + 1w for vertices v,w. The expectation of Wγ is equal to the probability

that γ differs from a boundary by some element of Ann−1 ξ, and is always equal to 1, even if v and

w lie in distinct connected components of X. But for free boundary condition the expectation of

Wγ is 0 if v and w lie in distinct components. In general, to see why it’s necessary to assume that

ξ be a subgroup, consider the following (trivial) counterexample: Let q = 3, take γ = 1Q for some

Q ∈ Kr−1(X), and let ξ = {c} for some c ∈ ΣX such that c(Q) = e2πi/3. Then ⟨Wγ⟩ξX,β,q ̸∈ R.

Corollary 65 generalizes corollary 42.

Corollary 65. For every subgroup spin condition ξ, if 0 ⩽ β1 ⩽ β2 ⩽ ∞ then

0 ⩽ ⟨Wγ⟩ξX,β1,q
⩽ ⟨Wγ⟩ξX,β2,q

⩽ 1

for every (r− 1)-chain γ.

Proof. As in the proof of corollary 42, this follows immediately from theorem 64 and proposition 63,

now taking instead the increasing event

{
ω ∈ ΩX | γ ∈ Br−1(Xω,Z/qZ) + Ann−1 ξ

}
.

4.5 Sharp threshold

Lastly, as promised on page 51, here is a result about the sharpness of thresholds. Its proof is a

straightforward extension of the proof of [Gri06, Theorem 3.16],30 which applies to the random-

30It appears there may be a small error in the statement and proof of [Gri06, Theorem 3.16]: in place of our factor
1

p+ q(1− p)
it contains min

{
1,

q

(p+ q(1− p))2

}
.
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cluster model on arbitrary graphs. A few consequences regarding thresholds may be found in

[Gri06, p. 42].

As a simple example, take d ⩾ 2 and r = 2 and q ⩾ 2, take A = G (the group of all lattice

translations, rotations, reflections, and compositions thereof), letγbe a nontrivial 1-cycle supported

on some 5 × 5 square, and let A be the event that some translate (under G) of γ belongs to

B1(Xω, Z/qZ). Since c
p+q(1−p) ⩾ c

q , the derivative d
dpφ

ξ
X,p,q(A) at the threshold (p such that

φξ
X,p,q(A) =

1
2 ) is bounded below by c

2q log |Kr(X)|.

Proposition 66 (Sharp threshold). There exists a constant c ∈ (0,∞), independent of all parameters,

such that the following holds. Let X be the modified box with periodic boundary spin condition ξ as described

on page 61, and identify X with a subset of the d-torus Td = Rd/2NZd. Let G be the group of all isometries

on Td that send integer lattice points to integer lattice points, and let A be a subgroup of G such that Kr(X)

is A-transitive. Let A ⊆ ΩX be an increasing event that is invariant under A. Then, for every p ∈ (0, 1),

d

dp
φξ

X,p,q(A) ⩾
c

p+ q(1− p)
min

{
φξ

X,p,q(A), 1−φ
ξ
X,p,q(A)

}
log |Kr(X)|.

Proof. The periodic boundary spin condition and the modification of the box ensure that φξ
X,p,q

is G-invariant. According to [Gri06, Theorem 2.48] there exists c such that, for all X, A, and p as

described above,

d

dp
φξ

X,p,q(A) ⩾ c
φξ

X,p,q(JQ)
(
1−φξ

X,p,q(JQ)
)

p(1− p)
min

{
φξ

X,p,q(A), 1−φ
ξ
X,p,q(A)

}
log |Kr(X)|

where JQ is the event thatQ is open for some givenQ ∈ Kr(X) (by invariance, the particular choice

of Q doesn’t matter.)

We produce bounds on the probabilityφξ
X,p,q(JQ) by conditioning on all r-cubes inKr(X)\{Q}.

Forω ∈ ΩX writeω+ andω− for the configurationωmodified onQ to makeQ open and closed,

respectively. LetMω = {ω+,ω−}. Then

φξ
X,p,q(JQ |Mω) = φξ

X,p,q(ω
+ |Mω)

=
φξ

X,p,q(ω
+)

φξ
X,p,q(ω

+) +φξ
X,p,q(ω

−)

=
p
∣∣Zr−1(Xω+)

∣∣
p
∣∣Zr−1(Xω+)

∣∣+ (1− p)
∣∣Zr−1(Xω−)

∣∣ .
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For everyω ∈ ΩX the ratio |Zr−1(Xω−)|
/
|Zr−1(Xω+)| is a natural number that divides q, because

Zr−1(Xω+) = {c ∈ Zr−1(Xω−) | σQ(c) = 1}

and σQ is a group homomorphism into the group of complex roots of q. So

φξ
X,p,q(JQ |Mω) ∈

[
p

p+ q(1− p)
, p

]
and

1−φξ
X,p,q(JQ |Mω) ∈

[
1− p,

q(1− p)

p+ q(1− p)

]
.

By the law of total probability, the same bounds hold for φξ
X,p,q(JQ) and 1 − φξ

X,p,q(JQ), respec-

tively. Therefore,
φξ

X,p,q(JQ)
(
1−φξ

X,p,q(JQ)
)

p(1− p)
⩾

1

p+ q(1− p)
,

which combined with the inequality above completes the proof.
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5 Infinite volume

Sections 3 and 4 describe the the higher Potts and FK–Potts models in a finite region, but of course

statistical physics is concerned with phenomena that emerge as the number of interacting elements

tends to infinity. In lattice gauge theories, a major open problem is to understand the decay of

a Wilson loop expectation with the size of the loop. It has been argued that if the Wilson loop

expectation decays exponentially in the area enclosed by the loop, then the gauge theory has quark

confinement, meaning that quarks do not appear in isolation [Cha21]. See also [Aiz+83], which

studies the sharpness of the transition from exponential-in-area decay to exponential-in-perimeter

decay in the case of (independent) Bernoulli plaquette percolation.

We won’t discuss the decay of Wilson loop expectations, and we won’t even carry out a complete

investigation of infinite-volume limits—indeed, even for the Ising model on Z3 the infinite-volume

limits are not fully understood [Bov06, p. 72]. We can, however, give some definitions and a few

preliminary results.

We will focus on the infinite-volume higher Potts model, using the (finite-volume) coupling

with the higher FK–Potts model as a proof device.

5.1 Gibbs states of the higher Potts model

For the basic setup, we’ll take the DLR approach (due to Dobrushin, Lanford, and Ruelle [Bov06,

p. 51].) It would take us too far off-track to explain the DLR machinery in general, so the defi-

nitions given below are specific to our model. Unfortunately, despite efforts to keep this section

reasonably self-contained, a full understanding may be difficult without knowledge of the general

case. The interested reader can find introductions in [FV17, ch. 6; Bov06, ch. 4; EFS93, §2] and

more comprehensive treatments in [Rue04; Geo11].

Roughly speaking, a (DLR) Gibbs state is a measure on the space of all spin configurations on an

infinite lattice, whose conditionals on all finite sublattices are described by Gibbs ensembles: prob-

ability measures of the form 1
Ze

−H with appropriate Hamiltonians H. (This kind of roundabout

definition is needed because there’s no way to define a Hamiltonian on the entire infinite lattice at

once.) Thus, a Gibbs state can be thought of as describing a macroscopic physical system that is

everywhere at microscopic equilibrium. The Gibbs states include all infinite-volume weak limits

of the (finite-volume) Gibbs ensembles [Rue04, §1.9]. Moreover, the variational principle dictates

that the Gibbs states that are translation-invariant are precisely the measures that maximize the
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topological pressure [Rue04, §4.2], a quantity that can be interpreted as the negation of free energy

density. So, in essence, the DLR framework captures the idea that a spin system is globally at

equilibrium if and only if it is locally at equilibrium. See [EFS93, pp. 933–934] for more on the

physical interpretation of Gibbs states.

Gibbs states are by no means the last word on lattice spin systems. A more general framework

is that of specifications, described in [Geo11]. In loose terms, non-Gibbsian specifications are

those where the local conditional measures cannot be described by a Hamiltonian based on a

spin interaction that decays sufficiently rapidly with distance. Non-Gibbsian specifications are

not uncommon. They often crop up when taking scaling limits [EFS93]. Also, even though the

higher Potts model can be described by a Gibbsian specification, the same cannot be said of the

random-cluster model or our higher FK–Potts model. Infinite-volume FK–Potts measures can be

defined via non-Gibbsian specifications (as is done in [Gri06, §4.4]), but we will not investigate this

approach here. Instead, we’ll focus on the Gibbs states of the higher Potts model because, after all,

the ultimate objective is to understand gauge theories.

Our first task is to define the configuration space Σ. A configuration σ ∈ Σwill be a simultane-

ous assignment of a spin to each (r− 1)-cube in Rd (the parameters r, d, p, q, β are as described at

the beginning of section 3.) Formally, recall that in finite volume (section 3.1) we took configuration

space ΣX = Cr−1(X, Z/qZ) =
(
Cr−1(X, Z/qZ)

)̂ =
(
(Z/qZ)Kr−1(X)

)̂. Our chains, cochains,

homology, etc. were defined only for finite volume, so we now define

Σ :=

(
(Z/qZ)

(
Kr−1(Rd)

))̂,
where (Z/qZ)(Kr−1(Rd)) is the direct sum of countably infinitely many copies of the group Z/qZ,

one for each (r − 1)-cube (recall from definition 15 that the parentheses in the exponent indicate

direct sum, as opposed to direct product.) That is, (Z/qZ)(Kr−1(Rd)) is the group of all finitely-

supported assignments of coefficients in Z/qZ to the (r − 1)-cubes. Thus, by fact 16 and the

identification Z/qZ ∼= Ẑ/qZ, the configuration space Σ is identified with the direct product

Σ ∼= (Z/qZ)Kr−1(Rd)

(all assignments of coefficients to (r− 1)-cubes, now without the requirement of finite support.)
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More generally, let

ΣΛ :=
(
(Z/qZ)(Λ)

)̂ ∼= (Z/qZ)Λ for all Λ ⊆ Kr−1(Rd).

Endow ΣΛ with the product topology; that is, take the discrete topology Z/qZ and the product

topology on (Z/qZ)Λ. The space ΣΛ is compact for every Λ ⊆ Kr−1(Rd). Let ρΛ : Σ→ ΣΛ be the

coordinate projection.

The following terminology is standard [EFS93, pp. 895–896; GHM01, §2.3].

Definition 67. An observable is a Borel-measurable function f : Σ → C. A local observable is a

function f : Σ → C that may be written as f = fΛ ◦ ρΛ for some finite Λ ⊆ Kr−1(Rd) and some

function fΛ : ΣΛ → C. That is, a local observable is one that depends on the spins of only finitely

many (r− 1)-cubes. △

Any element γ ∈ (Z/qZ)(Kr−1(Rd)) (such as a Wilson loop: section 3.4) thus gives a local

observableWγ : Σ→ C, σ 7→ σ(γ). Once we have a measure on Σ, we may define the observed value

of γ to be the expectation ofWγ.

For the exposition below, we’ll introduce some special notation.

Notation 68. The reader may refer to fig. 4 as a visual guide. Take a finite nonempty set Λ ⊆

Kr−1(Rd). Let

XΛ =
⋃

{Q ∈ Kr(Rd) | ∃P ∈ Λ : P ⊆ Q}.

That is, XΛ is the cubical set consisting of all r-cubes incident to some (r− 1) cube in Λ. Write

ΣΛ =
(
(Z/qZ)Λ

)̂,
Λ = Kr−1(XΛ), ΣΛ =

(
(Z/qZ)Λ

)̂,
Λ ′ = Kr−1(XΛ) \Λ,

Λc = Kr−1(Rd) \Λ, ΣΛc =
(
(Z/qZ)(Λ

c)
)̂.

The setΛ ′ includes, but may be strictly larger than, the setKr−1(∂XΛ) of all boundary (r−1)-cubes

of XΛ. Note that Σ = ΣΛc ⊕ΣΛ, and ΣXΛ
= ΣΛ. Here ΣXΛ

is defined as in section 3.1 taking XΛ in

place of X; notice the distinction between ΣΛ and ΣXΛ
. Let

ξη = {s ∈ ΣΛ | s|Λ ′ = η|Λ ′} for every η ∈ ΣΛc .
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The set ξη is a spin condition for XΛ. In the terminology of section 4, if Λ ′ = Kr−1(∂XΛ) (which

is not the case in fig. 4) then ξη is a point BSC for XΛ. △

Λ = {•}
Λ ′ = {◦}
Λ = {•, ◦}
XΛ=

⋃
{•, ◦,−}

Figure 4: Example set XΛ ⊆ R2 for r = 1. Here Λ consists of 8 vertices, and XΛ is the union of all
displayed edges together with their endpoints.

Definition 69. A (DLR) Gibbs state in the higher Potts model is a Borel31 probability measure πβ,q

on Σ that satisfies either, hence both, of the following conditions (which are equivalent by [Rue04,

Theorem 1.8].)

(a) (Conditionals)

For every nonempty finite Λ ⊆ Kr−1(Rd),

πβ,q = (ρΛcπβ,q)⊗ KΛ where KΛ(η, ·) := (ρΛπ
ξη

XΛ,β,q)(·), η ∈ ΣΛc .

That is, the operation of (i) taking the ΣΛc-marginal of πβ,q, followed by (ii) taking this

marginal’s product with the probability kernel KΛ defined as the ΣΛ-marginal of the condi-

tioned Potts measure (eq. (16)), gives back the original measure πβ,q.

(b) (Marginals)

For every nonempty finite Λ ⊆ Kr−1(Rd), there exists a probability measure λc on ΣΛc such

that

ρΛπβ,q =

∫
ΣΛc

λc(dη)ρΛπ
ξη

XΛ,β,q(·).

That is, the marginals are convex combinations of finite-volume higher Potts measures with

boundary conditions. (Actually, these convex combinations are always finite, because there

are only q|Λ ′| distinct sets ξη.) △
31The Borel σ-algebra on Σ is the σ-algebra generated by the cylinders (the finitely-supported events).
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Although we have no motive to do so, it’s also possible to define Gibbs states µp,q for the

Edwards–Sokal coupling on the joint configuration space

{
(σ,ω) ∈

(
(Z/qZ)

(
Kr−1(Rd)

))̂× {0, 1}Kr(Rd)

∣∣∣∣ (σ,ω) ∈ F
}

where F = {(σ,ω) ∈ ΣX × ΩX | ∀Q ∈ Kr(Rd) : ω(Q) = 1 =⇒ σQ = 1}. This configuration

space is defined as a cartesian product restricted by a finite set of forbidden patterns, analogously

to shifts of finite type. See [Rue04, §1.1] for the general theory of Gibbs states on such “restricted”

configuration spaces.

The reason that one cannot define Gibbs states on the higher FK–Potts model is that (in finite

volume) the change in probability by opening or closing a single r-cube can depend on individual

r-cubes arbitrarily far away. Consider the case r = 1 and q > 1, where closing a single edge can

increase the probability of a configuration by a factor of either 1−p
p q or 1−p

p , depending on if doing

so increases the number of components. But whether the number of components increases can

depend on whether the two components are linked by a single edge arbitrarily far away. These

long-distance effects were already hinted at in section 4 where we discussed the Hammersley–

Clifford theorem: The spatial Markov property does not hold for FK–Potts, no matter how fat we

make the wall (on which we’re conditioning) between two regions, so there is no Hamiltonian with

finite-range interactions.32

We could try to work around this difficulty by defining higher FK–Potts “hidden Gibbs states”:

take a Gibbs state in the higher Potts model, open permissible r-cubes independently with proba-

bilityp, and then forget the spins.33 This would be in line with our goal of understanding the higher

Potts Gibbs states. Unfortunately, it isn’t obvious what the connection is between (i) these hidden

Gibbs states, (ii) the infinite-volume random fields given by the non-Gibbsian specification of our

finite-volume higher FK–Potts model, and (iii) the thermodynamic limits of the higher FK–Potts

model. The connection between the latter two is poorly understood even for r = 1 [Gri06, p. 79].

For these reasons, we won’t discuss higher FK–Potts in infinite volume. There is, however, some

work done in this area in [DS23, §4.2, §5.2], which instead first defines the infinite-volume higher

FK–Potts model and then uses it to define the infinite-volume higher Potts model (this requires

32Actually, for a Gibbs specification it’s not necessary to have finite-range interactions, but it is necessary that the
interactions satisfy a certain summability condition (which, in the FK–Potts model, the do not.) See [Rue04, §1.2] for
details.

33Formally, we’re pushing forward a Gibbs state through a probability kernel from Σ to Ω. To prove that it’s a
legitimate kernel, use the result quoted in footnote 11.
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uniformly picking a cocycle from an infinite collection of compatible cocycles).

5.2 Thermodynamic limits of the higher Potts model

Now, a few words on the thermodynamic limits of the higher Potts model. We’ll follow precisely

the definitions in [Rue04, ch. 1]. Let (Λn) be a sequence of finite subsets of Kr−1(Rd) with

Λn → Kr−1(Rd), in the sense that every (r − 1)-cube belongs to Λn for all but finitely many

n. For every n let µn be a probability measure on ΣΛn
. For all finite A ⊆ B ⊆ Kr−1(Rd) let

ρAB : ΣB → ΣA denote the projection onto the A marginal, and likewise ρA : Σ → ΣA. It can

be shown by a diagonalization argument [Rue04, Proposition 1.4] that there exists a subsequence

(Λni
) such that the limit

lim
i→∞ ρΛΛni

µni
= ψΛ

exists for every finite Λ ⊆ Kr−1(Rd) (here, as before, ρΛΛni
µni

is the ΣΛ-marginal of µni
, and

convergence is in the usual sense of weak limits of probability measures on ΣΛ.) For every such

subsequence (Λni
), there exists a unique probability measure ψ on Σ such that

ψΛ = ρΛψ

for every finite Λ ⊆ Kr−1(Rd). Such a measure ψ is called a thermodynamic limit of the sequence

(µn). Of course, a sequence of measures can have many distinct thermodynamic limits (by passing

to distinct subsequences.)

Definition 70.

• Take a sequence of cubical sets Xn and let Λn = Kr−1(Xn). Assume that

(i) each Xn is a finite union of r-cubes (as described at the beginning of section 3);

(ii) for each n, ifQ is an r-cube whose every ((r− 1)-dimensional) facet belongs toΛn, then

Q ⊆ Xn;34 and

(iii) Λn → Kr−1(Rd) (therefore, Xn →
⋃
Kr(Rd)) as n→ ∞.

A thermodynamic limit of the corresponding higher Potts measures with free boundary

condition, πXn,β,q on ΣΛn
(defined in eq. (5)), will be called a higher Potts thermodynamic limit

with free boundary condition.

34This condition ensures that the Hamiltonian takes into account every possible interaction between elements of Λn,
and not merely the ones associated with those r-cubes that happened to be included in Xn.
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• Take a sequence of finite sets Λn → Kr−1(Rd) and a sequence (ηn) where ηn ∈ ΣΛc
n
. Let

XΛn
35 and ξη be as defined in notation 68. A thermodynamic limit of the higher Potts

measures πξηn

Xn,β,q on ΣΛn
(eq. (16)) will be called a higher Potts thermodynamic limit. △

Definition 70 is slightly awkward, and could probably be replaced by a equivalent definition

that is simpler. It’s presented in this form so as to be obviously compatible with [Rue04, ch. 1].

There is only one slight difference: Our sets Λn are not just any finite sets of (r − 1)-cubes, but

rather they always arise from the sets Xn which were declared to be unions of r-cubes. However,

this doesn’t cause any loss of generality. For if we defined a more general higher Potts measure

πΛn,β,q on ΣΛn
according to the general treatment in [Rue04, ch. 1], then this measure would put

uniform independent spin on any isolated (r− 1)-cube (that is, one that is not part of an r-cube all

of whose facets are in Λn). For that reason, once Λn is large enough, the marginals ρΛ would be

no more general.

Importantly, it’s a general result [Rue04, Theorem 1.9] that every thermodynamic limit with

free boundary condition is a Gibbs state, and that the set of all Gibbs states is the closed convex hull

(in the usual weak topology) of the set of all thermodynamic limits (i.e., for all possible sequences

of boundary conditions (ηn).)

What happens when we take an infinite-volume limit with a boundary condition that isn’t a

point BSC as in definition 70, but instead is a more general BSC (for example, wired and periodic

boundary conditions in the Ising and Potts models?) Then still every thermodynamic limit is a

Gibbs state. Such situations are discussed in great generality in [Geo11, ch. 4], which calls them

“random boundary conditions”.

We’ll now prove that the thermodynamic limit with free boundary condition does not require

passing to a subsequence (Λni
) when taking the weak limit. In particular, the higher Potts

thermodynamic limit with free boundary condition is unique. The proof uses the coupling to the

higher FK–Potts model along with its strong FKG property, which is invoked through a proxy,

corollary 55.

Proposition 71. There exists a unique probability measure πβ,q on Σ such that for every sequence (Xn)

(and Λn := Kr−1(Xn)) satisfying the three conditions given in the first paragraph of definition 70,

lim
n→∞ ρΛΛn

πXn,β,q = ρΛπβ,q for each finite Λ ⊆ Kr−1(Rd). (19)

35These XΛn , on the other hand, will not necessarily satisfy the special condition discussed in the previous footnote,
although enlarging them to do so would not modify the measures πξηn

Xn,β,q.
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Furthermore, this unique πβ,q is invariant under all symmetries of Zd (viz., all translations, rotations, and

reflections, and compositions thereof.)

Proof. Recall XΛ, Λ, and ΣΛ = ΣXΛ
from notation 68. Pick a sequence (Xn) satisfying the three

conditions.

Let πβ,q be some thermodynamic limit of (πXn,β,q) (i.e., after passing to some subsequence,

eq. (19) holds.) To show that πβ,q satisfies eq. (19) without passing to a subsequence, it suffices to

prove the following statement. For each finite nonemptyΛ ⊆ Kr−1(Rd), every function f : ΣΛ → C

has converging expectations

lim
n→∞(ρΛΛn

πXn,β,q)f = (ρΛπβ,q)f.

The reason it suffices to use Λ is that any g : ΣΛ → C may be composed with the projection ρΛΛ

to give a function f = g ◦ ρΛΛ : ΣΛ → C.

Fix some finite nonempty Λ ⊆ Kr−1(Rd). The characters of ΣXΛ
are the evaluation mapsWγ :

ΣXΛ
→ C where γ ∈ Cr−1(XΛ, Z/qZ), as was observed on page 58. By Fourier decomposition, f

may be written as a linear combination of these functionsWγ. Therefore, by linearity of expectation,

it suffices to prove

lim
n→∞(ρΛΛn

πXn,β,q)Wγ = (ρΛπβ,q)Wγ, γ ∈ Cr−1(XΛ, Z/qZ).

We know already that there is some subsequence along which convergence holds for every

γ. We’ll show that passing to a subsequence is unnecessary, by proving that the expectation

(ρΛΛn
πXn,β,q)Wγ is monotonically increasing in Xn for every γ: that is, the condition Xn ⊆ Xm

(equivalently, Λn ⊆ Λm) implies (ρΛΛn
πXn,β,q)Wγ ⩽ (ρΛΛm

πXm,β,q)Wγ.36

Take n large enough thatΛ ⊆ Λn. Then XΛ ⊆ Xn (because of the second assumption on (Xn)),

so we can identify each γ ∈ Cr−1(XΛ, Z/qZ) with κγ ∈ Cr−1(Xn, Z/qZ) where κ is the injection

(definition 9.) Thus, we may consider each Wγ to also be a function on a larger domain, Wγ :

ΣXn
→ C, and (by the expectation-of-expectation “tower law”) (ρΛΛn

πXn,β,q)Wγ = πXn,β,qWγ.

36A minor technical clarification: Although limnΛn = Kr−1(Rd) and thus limn Xn =
⋃
Kr(Rd), we never assumed

n ⩽ m =⇒ Xn ⊆ Xm. Still, for every n there does existM such thatM ⩽ m =⇒ Xn ⊆ Xm, and that is enough for the
existence of the limit limn→∞(ρΛΛn

πXn,β,q)Wγ.
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According to theorem 41, this expectation coincides with the probability

φXn,p,q

(
γ ∈ Br−1(Xn,ω, Z/qZ)

)
.

These probabilities are indeed monotonically increasing in Xn by corollary 55.

This proves that πβ,q satisfies eq. (19) for our chosen sequence (Xn). As πβ,q is uniquely

determined by its marginals ρΛπβ,q, it follows that there’s exactly one thermodynamic limit

associated with each sequence (Xn). To see that πβ,q does not depend on (Xn), observe that for any

other sequence of cubical sets Yn we may interleave withXn to get the sequence (X1, Y1, X2, Y2, · · · ),

along which there is still only one limit.

To show symmetry-invariance, let T : Rd → Rd be an isometry satisfying T(Zd) = Zd. Let T

act on Σ, and more generally for all Λ ⊆ Kr−1 let T map ΣΛ into ΣTΛ, as T(σ)(Q) = σ(T−1(Q))

for σ ∈ ΣΛ and Q ∈ Λ. We must prove Tπβ,q = πβ,q. From the symmetries in the definition of

πXn,β,q it follows that for sufficiently large n every function f : ΣXΛ
→ C satisfies

(
ρ(TΛ)(TΛn)

πTXn,β,q

)
(f ◦ T−1) = (ρΛΛn

πXn,β,q)f.

Sending n→ ∞ gives

(ρTΛπβ,q)(f ◦ T−1) = (ρΛπβ,q)f

or, equivalently,

πβ,q(f ◦ T−1 ◦ ρTΛ) = πβ,q(f ◦ ρΛ).

But T−1 ◦ ρTΛ = ρΛ ◦ T−1, so this implies

T−1πβ,q(f ◦ ρΛ) = πβ,q(f ◦ ρΛ).

Therefore, Tπβ,q = πβ,q, because every function depending on only finitely many spins may be

expressed as f ◦ ρΛ for some finite Λ and some f.

In particular, proposition 71 proves the existence and translation-invariance of infinite-volume

limits of Wilson loop expectations in the higher Potts model (with free boundary condition).

Corollary 72 is connected to two recent results:

• [Cha20, Theorem 5.4], which shows existence and translation-invariance of free-boundary
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infinite-volume limits of local observables in the Ising lattice gauge theory (r = 2 and d = 4)

at weak coupling (that is, sufficiently large β), and whose proof involves a specific estimate

on the decay of correlations.

• [FLV21, Theorem 4.1], which shows existence and translation invariance of free-boundary

infinite-volume limits of local observables in the clock (planar Potts) lattice gauge theory

(r = 2 and d = 4, and general q) for all β ⩾ 0, and whose proof uses an estimate known

as Ginibre’s inequality but otherwise is very similar to the proof here. It’s also mentioned

[FLV21, p. 3] that the proof can be extended to a general finite abelian group and a general

unitary faithful irreducible representation.

Similar results on the existence of infinite-volume limits for free boundary condition have been

known since at least 1982 (see the disussion and further references in [Cao20, p. 1441].) Corollary 72

extends these results to arbitrary cell dimension r in the special case of the higher Potts lattice gauge

theory.

Corollary 72. Take (Xn) as in proposition 71, and let γ ∈ Cr−1(X, Z/qZ) for any cubical set X ⊆ Rd.

Identify γ with the corresponding element of Cr−1(Xn, Z/qZ) for all Xn ⊇ X (by assigning 0 to all new

r-cubes as before.) Writing ⟨Wγ⟩Xn,β,q := πXn,β,qWγ as in section 3.4, the limit of expectations

lim
n→∞⟨Wγ⟩Xn,β,q.

exists, is real, is independent of the particular choice of the sequence (Xn), and is invariant under lattice

isometries (in the sense that the limit is unchanged when γ is translated, rotated, or reflected.) Moreover, if

0 ⩽ β1 ⩽ β2 ⩽ ∞, then

0 ⩽ lim
n→∞⟨Wγ⟩Xn,β1,q ⩽ lim

n→∞⟨Wγ⟩Xn,β2,q ⩽ 1.

Proof. Immediate from proposition 71 and corollary 42.

Next, a correlation inequality. For the Ising model in finite volume, it overlaps with two of

Griffith’s inequalities [Gri67, Theorems 2, 3] and is also referred to as one of the GKS inequalities

[Geo11, p. 456]. Note thatWγ1+γ2
=Wγ1

Wγ2
(pointwise product on the right-hand side.)

Corollary 73. Take (Xn) as in proposition 71, and let γ1, γ2 ∈ Cr−1(X, Z/qZ) for any cubical set
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X ⊆ Rd. Then, for every p ∈ (0, 1),

lim
n→∞⟨Wγ1+γ2

⟩Xn,β,q ⩾
(

lim
n→∞⟨Wγ1

⟩Xn,β,q

)(
lim
n→∞⟨Wγ2

⟩Xn,β,q

)
.

Proof. Take n large enough that Xn ⊇ X. For every ω ∈ ΩXn
, if γ1, γ2 ∈ Br−1(Xn,ω, Z/qZ)

then γ1 + γ2 ∈ Br−1(Xn,ω, Z/qZ) because the boundaries form a group. The two events {ω :

γ1 ∈ Br−1(Xn,ω, Z/qZ)} and {ω : γ2 ∈ Br−1(Xn,ω, Z/qZ)} are increasing. Thus, by positive

association (see theorem 35, which entails inequality (13)),

φXn,p,q

(
γ1 ∈ Br−1(Xn,ω, Z/qZ)

)
·φXn,p,q

(
γ2 ∈ Br−1(Xn,ω, Z/qZ)

)
⩽ φXn,p,q

(
γ1, γ2 ∈ Br−1(Xn,ω, Z/qZ)

)
⩽ φXn,p,q

(
γ1 + γ2 ∈ Br−1(Xn,ω, Z/qZ)

)
.

By theorem 41 it follows that

⟨Wγ1+γ2
⟩Xn,β,q − ⟨Wγ1

⟩Xn,β,q⟨Wγ2
⟩Xn,β,q ⩾ 0.

Now take the limit as n→ 0.

Incidentally, there exists another, very general way to prove invariance under symmetries. It’s

a general property of Gibbs states that for every Gibbsian specification that is invariant under a

symmetry group of the lattice, every free-boundary thermodynamic limit is invariant under the

same symmetry group. And analogous results hold for non-free boundary conditions, provided

the boundary conditions themselves have symmetries. See [Geo11, pp. 91–92, Examples (5.20)(1)–

(2)].37 The same reference also shows invariance under symmetries of the spin group: in our case

of the higher Potts model, the free-boundary thermodynamic limit πβ,q is invariant under the

operation of spin reversal (negating the coefficient of each (r− 1)-cube simultaneously.)

For general (non-free) boundary conditions, thermodynamic limits of the Potts model are

not necessarily translation-invariant. The best-known example is the non-translation-invariant

Dobrushin states in the Ising model in dimension d ⩾ 3, which are obtained by taking the infinite-

volume limit of boxes with spin +1 on boundary vertices whose first coordinate is nonnegative,

and spin −1 on boundary vertices whose first coordinate is negative [FV17, §3.10.7; Bov06, Remark

37The cited examples apply directly only to r = 1 but the theorems they reference apply to all r.
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4.3.19].

It’s well-known, however, that for strong coupling (that is, when β is sufficiently close to 0)

there exists a unique Gibbs state and hence only one thermodynamic limit—which is therefore

invariant under the symmetries of Zd by the arguments above. This is known as Dobrushin’s

uniqueness criterion [Geo11, ch. 8]. From [Geo11, Proposition 8.8] we directly calculate that the

higher Potts model has precisely one Gibbs state whenever

0 ⩽ β <
1

(d− r+ 1)(2r − 1)
.

For weak coupling (large β), the situation is more complicated. In the Potts model (r = 1 and

d ⩾ 2) it is known that there exists βc such that when 0 ⩽ β < βc there is a unique Gibbs state

and when βc < β there exist qmutually singular Gibbs states [GHM01, Theorem 3.2].
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6 Odds and ends

6.1 Examples of pathological surfaces

This informal section is meant to illustrate the difference between boundaries in the sense of

homotopy and boundaries in the sense of homology, to help clarify the concepts of section 2.2 for

readers unfamiliar with homology. The examples here are an elaboration on [AF84, §4].

As the first example, take a large flat rectangular sheet of plaquettes embedded in Z4, remove

two plaquettes from it, and join the resulting holes by a tube, to get a plaquette surface homeo-

morphic to that pictured in fig. 5. Such an orientation-flipping tube is called a cross-handle in the

theory of classification of surfaces [Wee20, ch. 5]. (The middle of the cross-handle does not actually

intersect the rectangular sheet: move it out into the fourth dimension to avoid this.) The drawing

shows a smooth cross-handle, but of course it will actually be a rectangular tube with sharp cor-

ners. This surface is homeomorphic to a Klein bottle with a point removed. It is a non-orientable

2-manifold with boundary, whose boundary is the loop γ bounding the large rectangle.

Figure 5: Plaquette surface with a cross-handle, overhead schematic (left) and oblique view (right).

The outer loop γ is not contractible within the surface. To see why, embed the surface in R3 by

letting the middle of the cross-handle pass outside the rectangular sheet. Run a wire through the

cross-handle and extend the wire’s ends upward and downward (perpendicular to the rectangular

sheet) to infinity. The wire together with γ form a nontrivial link, and the wire does not intersect

the surface, so there is no way to shrink γ to a point within the surface.

However, now consider a cycle over Z/2Z supported on the edges of γ, assigning coefficient

1 ∈ Z/2Z to each edge in γ. The chain thus defined is a boundary in the homological sense: It is

the boundary of the 2-chain that assigns 1 to each plaquette in the surface.

On the other hand, if the coefficient group is either G = Z or G = Z/qZ with q ⩾ 3, then

the cycle that assigns coefficient 1 ∈ G (or −1 as orientation demands, because as explained in

section 2.2 edges are not oriented) to each edge in γ is no longer a homological boundary. To see

why, we argue by contradiction. Suppose that this cycle is the boundary of some 2-chain c. The

coefficient in c of each plaquette in the surface is already uniquely determined, because each edge
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in γ determines the coefficient of its incident plaquette, and, since the cycle is supported on γ, each

plaquette has equal (or opposite, again as orientation demands) coefficient to all its neighboring

plaquettes. But consider the two plaquettes that were removed from the sheet when adding the

cross-handle. Their boundary edges all have coefficient equal to 1, so the cross-handle forces the

identity 1 = −1. This can hold only for coefficient group Z/2Z. However, for G = Z/qZ and q

even, putting a coefficient of q/2 on each edge in γ does give a boundary.

As a side note, for coefficients in Z it’s still not the case that every loop that is the support of a

boundary is contractible. One counterexample: In the double torus (i.e., the connected sum of two

tori: the genus-2 surface pictured in [Wee20, p. 253]), assign coefficient 1 to the plaquettes of one

torus and 0 to those of the other. The support of the boundary of this 2-chain is a loop running

around the waist of the double torus, which can be shown to not be contractible.

Again, take a rectangular sheet of plaquettes in Z4, and now remove three plaquettes, joining

the first and second hole with a cross-handle and joining the second and third hole with another

cross-handle, as pictured in fig. 6. Such a “surface” is not a 2-manifold, because the four edges

bounding the center hole are each incident to three plaquettes (one plaquette in the sheet and one

in each cross-handle.)

Figure 6: Plaquette surface with double cross-handle, overhead schematic (left) and oblique view
(right). The centres of the two bights do not intersect the sheet, but instead pass beside it in the
fourth dimension.

Again, the outer loop γ is not contractible within the surface, by an argument analogous to

before.

But take a cycle of Z/qZ supported on the edges of γ, assigning coefficient j ∈ Z/qZ to each

edge. In order for this cycle to be a boundary, it’s necessary and sufficient for the plaquettes

in the flat rectangular sheet to have coefficient j; those in the first cross-handle, j (to satisfy the

zero-boundary constraint around the left hole); those in the second cross-handle, 2j (due to middle

hole); and (again) those in the sheet, −2j (due to right hole). So j = −2j, or 3j = 0. Thus, there

exists a nontrivial boundary supported on γ if and only if q ≡ 3 (mod 3).

Now glue together the two previous examples along γ, to obtain a set of plaquettes pictured
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schematically in fig. 7.

Figure 7: The previous two examples glued together along the outer loop.

Take coefficient group Z/6Z. Again we will consider boundaries supported on γ. The contri-

bution to γ due to the top sheet (with the single cross-handle) is either 0 or 3; the contribution

due to the bottom sheet is 0, 2, or 4. So every cycle supported on γ is the boundary of exactly one

2-chain. For other coefficient groups Z/qZ, γ supports a nontrivial boundary if and only if q is

divisible by either 2 or 3.

The upshot is that we shouldn’t expect it to be geometrically obvious whether a particular

loop is a (homological) boundary in a given cubical set. But we can always answer this question

computationally using the methods described in section 6.2.

Such pathological situations do not occur in the classical case, r = 1 (the spins-on-vertices Potts

model.) If a pair of distinct points {x, y} is a homological boundary, i.e., 1x − 1y ∈ B0(Xω,Z/qZ),

then x and y belong to the same component—that is, the associated 0-sphere is contractible

in the graph induced by the edges open in ω. To see why, take a chain c ∈ C1(Xω,Z/qZ)}

with ∂1c = 1x − 1y. The support of c is a subset of the set of edges open in ω; these edges

induce a subgraph Gc of Xω. We may assume that Gc is acyclic because if d is a 1-cycle then

∂1(c − d) = ∂1c = 1x − 1y. The support of ∂1c contains all leaf vertices (meaning: those incident

to exactly one edge) of Gc. Thus, Gc is an acyclic graph whose only leaves are x and y. It follows

that the edges of Gc form a path connecting x and y.

Therefore, there’s no essential distinction between 0-boundaries in the sense of homology and

in the sense of homotopy. This, combined with theorem 41, might be one reason that the decay

of correlations is easier to analyze in the classical Potts model than in the Potts gauge (and higher

Potts gauge) theories.
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6.2 Algorithms

The models described above are amenable to computation via matrix arithmetic.

Counting cocycles

To compute the probability mass function in eq. (6) we must find |Zr−1(Xω, Z/qZ)| = |ker δr−1|.

The chain groups are modules over the principal ideal domain Z/qZ, and δr−1 is a module

homomorphism between chain groups. So δr−1 can be described by a matrix over a principal ideal

domain,M ∈Mm×n(Z/qZ). Perform Gaussian elimination onM to obtain a Smith normal form,

M ′ =

D 0

0 0

, where D is the diagonal matrix diag(d1, d2, . . . , dr) for some d1, . . . , dr ∈ Z/qZ

with d1 | d2 | · · · | dr and r ⩾ 0. Writing dj = [cj] with representatives cj ∈ Z, the number of

cocycles is

|Zr−1(Xω, Z/qZ)| =
∣∣kerM ′∣∣ = qn−r

∣∣ker diag(d1, d2, . . . , dr)
∣∣ = qn−r

∏
1⩽j⩽r

gcd(cj, q).

If we have a more general boundary condition ξ (as per eq. (17)), where ξ is a subgroup of

ΣX = Cr−1(X,Z/qZ), then we are tasked with finding the size of the intersection of two Z/qZ-

submodules of ΣX. This procedure is hardly any more difficult: First, express ξ as the kernel

of some Z/qZ-module homomorphism α : ΣX → A (as can always be done: the projection onto

the group quotient Σ/ξ is such a homomorphism.) Then, compute the size of the kernel of the

Z/qZ-module homomorphism (δr−1, α) : ΣX → Cr(X,Z/qZ)⊕A via the method detailed above.

For information about Gaussian elimination and the Smith normal form of a matrix over a

principal ideal domain, see [Gor16, §14.2].

Conditional sampling

The first conditional, µX,p,q(σ | ω) (proposition 40), is uniform and therefore can be computed

immediately once we find the size of its support, |Zr−1(Xω, Z/qZ)|, using the method just ex-

plained in section 6.2. And again, the variant with boundary conditions (proposition 49) presents

no additional challenges when ξ is a subgroup of ΣX.

To compute the second conditional, µX,p,q(ω | σ), no special techniques are needed.

To sample σ conditional on ω, perhaps the easiest way is to first reduce to Smith normal form

as described in section 6.2, then sample each component independently and uniformly, and then
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transform back to the original basis. This works equally well when there are boundary conditions

(again, ξ should be a subgroup of ΣX.) Contrast this to the the classical random-cluster model

(spins on vertices, r = 1), where each connected component in Xω is independently and uniformly

assigned a spin.

Samplingω conditional on σ is even easier: open each allowable r-cubeQ (i.e., each for which

σQ = 1) independently with probability p, and leave all other r-cubes closed.

Coupling from the past

The strong FKG property proved in section 3.2 for the higher FK–Potts measure φX,p,q—in partic-

ular, 1-monotonicity—is precisely what’s needed for monotonicity [Gri06, Inequality (8.9)] of the

Gibbs sampler (i.e., Glauber dynamics, or the single-site heat bath algorithm.) Monotonicity allows

us to use the “coupling from the past” technique for perfect sampling [Thö00; Gri06, §8.4]. Without

monotonicity, coupling from the past would be computationally infeasible because it’s necessary

to simulate a separate Markov chain for each possible initial configuration; with monotonicity, two

chains are enough (one staring from the all-r-cubes-open configuration, another starting from the

all-closed configuration.)

This method lets us estimate Wilson loop expectations for small finite-volume lattices. If the

expectation of a Wilson loop Wγ is w, then φX,p,q

(
γ ∈ Br−1(Xω, Z/qZ)

)
= w (theorem 41.) So

the variance of an estimate ŵ for w, computed as the mean of an independent sample of size n,

is Var(ŵ) = Var
(
Bin(n,w)

)
=

w(1−w)
n ⩽ 1

4n (where Bin(n,w) is the binomial distribution on n

elements.) A single sampling unit ω can be obtained by simulating a pair of Markov chains on

ΩX until they coalesce, and then the predicateω ∈ Br−1(Xω, Z/qZ) = im∂r can be computed via

Gaussian elimination, analogously to section 6.2.

Simulations of spin models have long been studied in the physics literature. See, for instance,

[ES88; KG95; KO12].

6.3 Ground states of the random-cluster model

In statistical physics, the ground states of a model (that is given as a discrete probability measure

on a configuration space) are the configurations with maximal probability mass.

Determining the ground states is often a useful early step toward understanding a model’s

behaviour. As a brief diversion, we’ll demonstrate by reviewing the simplest interesting example,

the iid Bernoulli model. Take configuration space Ω = {0, 1}E for some finite set E, and let
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Pp(ω) = po(ω)(1 − p)c(ω) where o(ω) =
∣∣{e ∈ E | ω(e) = 1}

∣∣ and c(ω) =
∣∣{e ∈ E | ω(e) = 0}

∣∣ for

ω ∈ Ω. The ground states are

ω0 (the all-0 configuration) for 0 ⩽ p < 1
2 ,

all configurations for p = 1
2 ,

ω1 (the all-1 configuration) for 1
2 < p ⩽ 1.

On the other hand, if 0 < p < 1
2 and E is large then, despite Pp being maximized at ω0, in

absolute terms Pp(ω
0) can be quite small. Consider the density observable dp(ω) =

o(ω)
|Ω|

,

whose distribution is normalized binomial, 1
|Ω|

Bin(2|E|, p). If dp is the only available observable

then the macrostates are the sets Mk =
{
ω ∈ Ω

∣∣ dp(ω) = k
|Ω|

}
for k = 0, 1, . . . , |E|. Thus, the

ground state, considered as the macrostate M0 = {ω0} among all macrostates, is actually very

unlikely to occur when |E| is large. Instead, there is another highest-probability state MK where

K := argmaxk Pp(Mk). We can consider the members ofMK to be the typical configurations.

Borrowing language from statistical physics, define the energy Up(ω) := −o(ω) logp −

c(ω) log(1 − p) and entropy S(ω) := −
o(ω)
|E| log o(ω)

|E| −
c(ω)
|E| log c(ω)

|E| . The ground state M0 has

minimum energy, the state(s)M⌊|E|/2⌋,M⌈|E|/2⌉ have maximum entropy, and the equilibrium state

MK exhibits a kind of energy–entropy trade-off (in fact, K/|E| → p as |E| → ∞38; note however that

the variational principle concerning the free energy Fp = Up − S [Rue04, p. 4] doesn’t quite apply

because in that context the equilibrium macrostate is the distribution Pp itself.)

We go on to investigate the ground states of the random-cluster model (not the general higher

FK–Potts model, but only the case r = 1.) Although the results here use well-known tools, they

have never before (to my knowledge) been published.

Recall from section 1 the random-cluster model on a finite graph G = (V, E),

φG,p,q(ω) ∝ (1− p)c(ω)po(ω)qk(ω), p ∈ (0, 1), q ∈ (0,∞), ω ∈ Ω := {0, 1}E

where o(·) and c(·) are the number of open and closed edges, respectively, and k(·) is the number of

open clusters (that is, connected components in the subgraph induced by the open edges, including

isolated vertices.)

38To prove this, let f(k) =
(
n

k

)
pk(1 − p)k for 0 ⩽ k ⩽ n and p ∈ (0, 1), and calculate f(k+ 1)

f(k)
> 1 ⇐⇒ k+ 1

n+ 1
< p

for 0 ⩽ k < n.
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The next result is a partial characterization of the ground states of φG,p,q in the case of

planar G. It also assumes another property of G: the face density of a configuration never

exceeds its edge density. More explicitly, let F and f be the number of faces in the graphs G and

Gω := (V, {x ∈ E | ω(x) = 1}), respectively, not counting the unbounded exterior face, and let E

and e be the number of edges in the graphs G and Gω, respectively. The property is

f

F
⩽
e

E
for everyω ∈ Ω. (†)

Note that forω0 andω1 the inequality in (†) reduces to 0 = 0 and 1 = 1, respectively.

We restrict ourselves to q > 1. If q = 1 then φG,p,q reduces to iid Bernoulli, whose ground

states we’ve already examined. The method of proof in proposition 74 does in fact also handle all

0 < q ⩽ 1, and the case 0 < q < 1 is interesting from the perspective of graph theory: for certain

values of p the ground states may be the spanning trees, the forests, or the connected subgraphs.

Incidentally, this also provides a geometric explanation for some of the weak limits as q → 0

described in [Gri06, §1.5]. But further discussion for 0 < q ⩽ 1 is omitted due to time constraints.

Proposition 74.

Let G = (V, E) be a finite connected planar graph with at least one edge. Let p ∈ (0, 1) and q ∈ (1,∞).

(i) If p ⩽ 1
2 then the all-closed configurationω0 is the unique ground state of φG,p,q.

(ii) If p > 1
2 and (†) holds, then:

(a) If p <
(
1+ exp

[
−V−1

E logq
])−1 then the all-closed configuration ω0 is the unique ground

state.

(b) If p >
(
1+ exp

[
−V−1

E logq
])−1 then the all-open configurationω1 is the unique ground state.

(c) If p =
(
1+ exp

[
−V−1

E logq
])−1 thenω0 andω1 are both ground states. If moreover (†) holds

with strict inequality for allω ∈ Ω \ {ω0,ω1}, then there are no other ground states.

Proof. Maximizing φG,p,q amounts to maximizing its logarithm, which (since c(ω) + o(ω) = |E|)

satisfies

logφG,p,q(ω) ∝ o(ω) log p

1− p
+ k(ω) logq =

(
o(ω), k(ω)

)
·
(

log p

1− p
, logq

)

where · is the Euclidean inner product on R2. Therefore, the ground states are the configurations
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ω ∈ Ω for which the point xω :=
(
o(ω), k(ω)

)
∈ R2 has greatest orthogonal projection onto the

vector vp,q :=

(
log p

1− p
, logq

)
∈ R2.

We will examine the geometry of the set S :=
{

xω
∣∣ ω ∈ Ω

}
, which depends only on the graph

G. This set S is pictured for several graphs in fig. 9 and fig. 10. Most points in S correspond to many

different configurations; the number of configurations associated with each point is indicated by a

numeral beside it.

Evidently, xω0 = (0, V) and xω1 = (E, 1), and these are the only configurations associated with

these two points. Every other configurationωmust satisfy 1 ⩽ o(ω) ⩽ E−1 and 1 ⩽ k(ω) ⩽ V−1,

and also o(ω)+k(ω) ⩾ V (by Euler’s formula, eq. (21).) Ifω is a spanning tree then xω = (V−1, 1);

removing edges one by one from this spanning tree (in any order) yields points (V − k, k) for all

1 ⩽ k ⩽ V . This explains the lower horizontal boundary and the lower-left diagonal boundary in

the displayed figures.

By assumption, q > 1, so logq > 0.

For (i), the condition p ⩽ 1
2 implies log p

1−p ⩽ 0, so the vector vp,q lies in the third quadrant.

In this case, it’s clear geometrically thatω0 is the unique ground state.

For (ii), the condition p > 1
2 implies log p

1−p > 0, so the vector vp,q lies in the interior of the

first quadrant.

Let ℓ be the line passing through xω0 and xω1 . We will show that if (†) holds then all points

xω lie below ℓ, and if (†) holds strictly as specified in (c) then all points xω for ω ̸∈ {ω0,ω1} lies

strictly below ℓ.

Recall Euler’s formula (the early form of fact 24),

V − E+ F = 1 (20)

where (overloading the symbols as usual) V is the number of vertices, E is the number of edges,

and F is the number of faces in G, not counting the unbounded exterior face. For the induced

subgraph Gω := (V, {x ∈ E | ω(x) = 1}), to keep the notation compact we’ll write e (= o(ω)) for

the number of edges, f for the number of faces, and also k (= k(ω)) for the number of components.

Euler’s formula for Gω is

V − e+ f = k. (21)
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The line ℓ is given in slope–intercept form by the equation y =
1− V

E
x+V . Thus, for everyω ∈ Ω,

xω lies (weakly) below ℓ ⇐⇒ k ⩽
1− V

E
e+ V

⇐⇒ f− e ⩽
1− V

E
e (by eq. (21))

⇐⇒ f ⩽
1− V + E

E
e

⇐⇒ f ⩽
F

E
e (by eq. (20))

⇐⇒ f

F
⩽
e

E
. (22)

Likewise, xω lies strictly below ℓ if and only if f
F
<
e

E
.

Assume (†), so that by the arguments above S lies within the convex hull of {xω0 , xω1 , xωs}

whereωs is a spanning tree (to be explicit: we’ve shown that every xω ∈ S lies on the correct side

of each face of this simplex.) The slope of the normal to ℓ (in the outward, top-right, direction) is
E

V−1 (this is valid because we’ve assumed E ⩾ 1 and thus V > 1.) Recalling that vp,q lies in the

interior of the first quadrant, we see geometrically that if the slope of vp,q is strictly greater than
E

V−1 thenω0 is the unique ground state; if the slope is strictly less than E
V−1 thenω1 is the unique

ground state, and if the slope is equal to E
V−1 thenω0 andω1 are ground states. Moreover, in the

case of equality, under the strict inequality condition given in (c) there are no other ground states.

The slope of vp,q is logq
log p

1−p

. Rearranging the comparisons,

logq
log p

1−p

⋚
E

V − 1
⇐⇒ V − 1

E
logq ⋚ log p

1− p
(since p > 1

2 )

⇐⇒ p

1− p
⋛ exp

[
V − 1

E
logq

]
⇐⇒ 1− p

p
⋚ exp

[
−
V − 1

E
logq

]
⇐⇒ 1

p
⋚ 1+ exp

[
−
V − 1

E
logq

]
⇐⇒ p ⋛

(
1+ exp

[
−
V − 1

E
logq

])−1

.

It bears mentioning that this method of proof has other applications, such as identifying

the lowest-probability configurations, or efficiently generating a graph that displays the entropy of

φG,p,q as a function of (p, q) (pre-compute the set S together with the labels as in figs. 9 and 10 and
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project the data orthogonally onto span{vp,q} for each (p, q); time may be saved by parametrizing

vp,q in polar coordinates.)

The code used to generate figs. 9 and 10 (for the proof of proposition 74) is listed in section 6.3.

Generating fig. 10 for S4 took 9 minutes on an AMD Ryzen 3 3200G desktop CPU, with 12 GB

memory allocated. A more conscientious implementation39 would finish in seconds and allocate

less than one kilobyte. But because of combinatorial explosion it would not be useful to optimize

the code. The graph Sn has 2E = 22n(n−1) configurations, so if we could compute k(ω) using a

mere 226 clock cycles per configuration then (on a 3.8 GHz processor, single-threaded) analyzing

S4 would take one second, S5 would take 18 hours, and S6 would take two millennia.

The complete graph Kn is not planar for n ⩾ 5, so fig. 9 displays S only for K3 and K4. Observe

from these images that for some graphs all points of S lie within the simplex, and for other graphs

this is not the case. Specifically, by the equivalence (22), the condition (†) holds for K3 and K4 but

not for the graphs K3 +K3 and K4 +K4 obtained by joining two copies of the complete graph with

a single edge.

We will show, however, that in the case of the finite planar square lattice, (†) always holds

(proposition 75).

Figure 8: The square lattice S4

39Iterate over the configurations in a Gray code ordering, storing only the final tally.
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Figure 9: The set S for various graphs. The “Siamese graph” Kn + Kn consists of two copies of Kn

joined by a single edge.
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Figure 10: The set S for the 4× 4 square lattice S4, pictured in fig. 8.
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Proposition 75. Let n ⩾ 2 and let G be the finite planar square lattice Sn (i.e., on n × n vertices.) The

condition (†) holds with strict inequality for everyω ∈ Ω \ {ω0,ω1}.

Proof. Fix n ⩾ 2. The vertex, edge, and face counts for Sn are respectively

V = n2, E = 2n(n− 1), F = (n− 1)2.

Substituting these values into (†) tells us that we must prove

f <
n− 1

2n
e (23)

for every ω ∈ Ω \ {ω0,ω1}. Our assumption n ⩾ 2 implies 1
4

⩽
n− 1

2n
<
1

2
. Thus, if for

a configuration ω ∈ Ω the graph Gω satisfies f ⩽
n− 1

2n
e, and if ω ′ is obtained from ω by

the removal of one face and at most two edges, then Gω ′ satisfies (23). Thus, we may assume (by

induction, filling in faces one plaquette at a time) that each face ofGω consists of a single plaquette.

Moreover, the removal of an edge that isn’t incident to a face can only make the inequality (23)

tighter, so we may assume that every edge is incident to a face. In summary, we may assume

without loss of generality that the set of open edges is a union of boundaries of plaquettes, as for

example pictured in fig. 11. (Note a subtlety in the above argument: the all-openω1 and all-closed

ω0 configurations have equality f = n− 1

2n
e.) Take an arbitrary such plaquette boundary union

Figure 11: A union-of-plaquettes configuration in S6. The displayed edges are open.

Figure 12: Left: All southeast edges in S5. Right: Some plaquettes in S5 together with their
southeast edges.
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ω ̸∈ {ω0,ω1}. Forget (23): we will prove directly the original form, f
F
<
e

E
. Let Ese = 2(n − 1)2

be the number of edges that are directly southeast of some plaquette, all of which are shown in

the first image in fig. 12. Let ese be the number of edges directly southeast of the faces in Gω; an

example is shown in the second image in fig. 12. We have ese = 2f and Ese = 2F, and therefore

f

F
=
ese
Ese
. (24)

Let ew be the number of vertical edges open inω that are not directly east of any face ofGω, and en

the number of horizontal edges not directly south of any face. Thus, e = ese + ew + en. The second

image in fig. 12 has ese = 12, ew = 4, and en = 5. Likewise, let Ew and En be the number of vertical

and horizontal (respectively) edges in Sn not already counted by Ese, so that Ew = En = n− 1 and

E = Ese + Ew + En.

Each of the nonempty horizontal rows of plaquettes in Gω contributes at least 1 to ew and at

most n − 1 to f, whereas each horizontal row of plaquettes in G = Sn contributes exactly 1 to Ew

and exactly n− 1 to F. Thus, ew
f

⩾
1

n− 1
=
Ew
F

, and therefore

f

F
⩽
ew
Ew
. (25)

Likewise,
f

F
⩽
en
En
. (26)

Since we’re assumingω ̸∈ {ω0,ω1}, there is either some nonempty row or some nonempty column

of faces inGω that has strictly fewer than n−1 faces, so at least one of the inequalities (25) and (26)

holds strictly. Combining (24) to (26) via the mediant inequality40 gives the required

f

F
<

ese + ew + en
Ese + Ew + En

=
e

E
.

Incidentally, the ground states of the random-cluster model are unrelated to the ground states of

the Potts model—the Edwards–Sokal coupling doesn’t give any useful connection. But the ground

states of the Potts model are easy to identify (for positive interactions β > 0): Assign equal spins

to the vertices within each connected component of G. More generally, in the higher Potts model

with free boundary condition, the ground states are the cocycles (elements of Zr−1(X, Z/qZ).)

40The mediant inequality is: a
b
⩽ c

d
=⇒ a

b
⩽ a+c

b+d
⩽ c

d
and a

b
< c

d
=⇒ a

b
< a+c

b+d
< c

d
, where a, b, c, d ∈ R and

b, d > 0.

107



Appendix: Code listings

This Python 3 code was used to generate figs. 9 and 10 in section 6.3.

1 from collections import defaultdict

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

6 # Graph data format:

# (vertices, edges) where:

# vertices is a set

# edges is a set of unordered pairs (as frozensets) of vertices

# Only simple connected finite graphs are supported.

11

# Return graph: Square lattice with side length n (i.e., n*n vertices.)

def make_square_graph(n):

def z2dist(edge1, edge2):

return abs(edge1[0] - edge2[0]) + abs(edge1[1] - edge2[1])

16 vertices = set([(x, y) for x in range(n) for y in range(n)])

edges = set([frozenset({v, w})

for v in vertices for w in vertices

if z2dist(v,w) == 1])

return (vertices, edges)

21

# Return graph: Complete graph on n vertices.

def make_complete_graph(n):

assert 1 <= n and n <= 4 # K_n is not planar for n > 4.

vertices = set(range(n))

26 edges = set([frozenset({v,w}) for v in vertices for w in vertices if v != w])

return (vertices, edges)

# Return graph: Two copies of complete graph K_n, joined by a single edge.

def make_siamese_graph(n):

31 assert n >= 1 # Otherwise , can’t join them.

vertices_a = set(range(0, n))

edges_a = set([frozenset({v,w}) for v in vertices_a for w in vertices_a if v != w])

vertices_b = set(range(n, 2*n))

edges_b = set([frozenset({v,w}) for v in vertices_b for w in vertices_b if v != w])

36 joiner = frozenset((0, n))
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return (set.union(vertices_a , vertices_b),

set.union(edges_a, edges_b, {joiner}))

# Return the number of clusters.

41 def num_clusters(graph):

remaining_vertices = set(graph[0])

remaining_edges = set(graph[1])

count = 0

while(len(remaining_vertices) > 0):

46 incident_vertices = set((remaining_vertices.pop(),))

current_cluster = set(incident_vertices)

while(incident_vertices != {}):

incident_edges = set()

for v in incident_vertices:

51 new_incident_edges = set(filter(lambda e: v in e, remaining_edges))

incident_edges = incident_edges.union(new_incident_edges)

remaining_edges = remaining_edges.difference(new_incident_edges)

current_cluster = current_cluster.union(incident_vertices)

if len(incident_edges) == 0:

56 incident_vertices = {}

else:

incident_vertices = set.difference(

set(frozenset.union(*incident_edges)),

incident_vertices

61 )

count += 1

remaining_vertices = remaining_vertices.difference(current_cluster)

return count

66 # Return a list of all subsets of s.

def powerset(s):

def _powerset(s):

if len(s) == 0:

return [set()]

71 x = s.pop()

tail = powerset(s)

return tail + [t.union((x,)) for t in tail]

return _powerset(set(s))
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76 def graph_configurations(graph):

vertices, edges = graph

for edge_subset in powerset(edges):

yield (vertices, edge_subset)

81 # Return a (default)dict with keys (e, c) and values n, such that n is the number

# of configurations that have e edges and c clusters. All entries will have n >= 1.

def ledger(graph):

l = defaultdict(lambda: 0)

for g in graph_configurations(graph):

86 l[(len(g[1]), num_clusters(g))] += 1;

return l

if __name__ == "__main__":

91 # Generate the data

data = ledger(make_square_graph(4))

graph_name = "Square graph $S_4$"

96 #data = ledger(make_complete_graph(4))

#graph_name = "Complete graph $K_4$"

#data = ledger(make_siamese_graph(4))

#graph_name = "Siamese graph $K_4 + K_4$"

101

# Plot the data

plt.figure(dpi=300) # High resolution

plt.rc(’axes’, axisbelow=True) # Grid behind everything else

plt.grid(True, which="both", color="lightgrey")

106

data_flat = [(k[0], k[1], v) for (k, v) in data.items()]

e_values = np.array([i[0] for i in data_flat])

c_values = np.array([i[1] for i in data_flat])

plt.scatter(e_values, c_values, color=’red’)

111

for e,c,n in data_flat:

label = "{:g}".format(n)

plt.annotate(n,

110



(e,c),

116 textcoords="offset points",

xytext=(8,7), # label offset

ha=’center’,

arrowprops=None,

fontsize=6

121 )

plt.gca().xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(1))

plt.gca().yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(1))

plt.title("Distribution of graph configurations: " + graph_name)

plt.xlabel("$o(\omega)$ (number of open edges)")

126 plt.ylabel("$k(\omega)$ (number of clusters)")

plt.show()
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