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Abstract

The Edwards—Sokal coupling of the standard Potts model with the FK-Potts (random-cluster)
bond percolation model can be generalized to arbitrary-dimension cells. In particular, the Potts
lattice gauge theory on Z49 has a graphical representation as a plaquette percolation measure. We
systematically develop these previously-known results, using the frameworks of cubical (simpli-
cial) homology and discrete Fourier analysis.

We show that, in the finite-volume setting, the Wilson loop expectation of a higher cycle vy
is equal to the probability that v is a homological boundary in the higher FK-Potts model. We
also prove the strong FKG property of the higher FK-Potts model. These results culminate in a
simple proof for the existence of infinite-volume limits in the higher Potts model and, in certain
cases, of their invariance under translations and other symmetries. Additionally, we thoroughly
examine the behavior of boundary conditions as they relate to the Edwards-Sokal coupling, for
the purpose of understanding the higher Potts Gibbs states. In particular, we discuss spatial
Markov properties and conditioning in the higher FK-Potts model, and generalize to more general
boundary conditions the FKG property, the aforementioned identity for Wilson loop expectations,
and a result about monotonicity in the coupling strength parameter. Also, we prove a theorem
regarding the sharpness of thresholds of increasing symmetric events for the higher FK-Potts
model with periodic boundary conditions.

In the final section, we describe some matrix-based sampling algorithms. Lastly, we prove a
new characterization of the ground states of the random-cluster model, motivated by the problem

of understanding the ground states in the higher FK-Potts model.
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Introduction

Lattice spin models have been studied via graphical representations since at least the 1970s [Gri06,
p- 341]. The idea behind a graphical representation is to express quantities of interest in terms
of other quantities derived from a configuration space of a graph (see [Dum16] for a general
introduction.) One of the most famous graphical representations, the random-cluster model, is
family of bond percolation measures that can be probabilistically coupled to the Ising model and
to its n-spin generalization, the Potts model. Results from the theory of percolation carry across
the coupling to prove statements about the Ising model. The random-cluster representation is
well-studied and even has its own textbook [Gri06]. Our aim here is to generalize to a certain class
of lattice gauge models, which are essentially like the Potts model except with spins assigned to
the edges of the hypercubic lattice rather than to its vertices. In fact, even more generally, we’ll
describe a class of couplings for the corresponding higher lattice gauge theories which assign spins
to elements of higher-dimension cells (plaquettes, 3-cubes, etc.)!

Lattice gauge theories are meant to serve as discretizations of certain quantum field theories
[Chal9]. Our higher random-cluster model has been floating around the literature in some form for
several decades, but it hasn’t been mathematically developed in an entirely rigorous way. The key
difficulty is that extending to higher dimension requires homology theory (this has been known
for some time [DW82; AF84].) In particular, Aizenman and Frohlich showed that the formula for
the random-cluster model does not extend in an obvious way to a useful plaquette percolation
model [AF84]. This thesis consists of a precise development of a model suitable for coupling to
the the Potts lattice gauge theory, with rigorous proofs of a few initial results.

The purpose of developing the graphical representation is to understand the behavior of certain
observables called Wilson loops in the lattice gauge theory. This problem has received considerable
attention in the last several years (e.g., [Cha20; Cao20; FLV21]) and this, in part, is what spurred
the present work.

During the preparation of this thesis, a preprint was released by Duncan and Schweinhart with
substantial overlap with this thesis [DS23]. Duncan and Schweinhart write in considerable depth,
presenting some results in homological percolation—area and perimeter laws, and a theorem
about hypersurfaces in the infinite-volume limit of the torus, with applications to Swendsen-Wang

dynamics. Also, they discuss duality. Their preprint requires the parameter q to be prime, and

Higher gauge theory can be quite challenging algebraically—see [BH11; Pfe03]—but we won’t need such advanced
algebraic machinery here.



the proof there of the “probability = expectation” theorem (there Theorem 5, here Theorem 41) is
not valid for non-prime q [DS23, p. 11]. However, for the model given here (and also mentioned
in [DS23, p. 11]) this result does indeed hold for all integer q > 1. Also, Duncan and Schweinhart
refer to [HS16], which proves FKG for prime q. The proof given herein (theorem 35) is different
because it must work for arbitrary integer q > 1, not only prime ¢, and so it cannot rely on Betti
numbers. This is important because ultimately we’d like to consider more general gauge groups.
Finally, the discussion of boundary conditions here (section 4) is more comprehensive, and the
discussion of infinite-volume limits (section 5) is very different from that in [DS23, §4.2].

This thesis contains no new theorems regarding phase transitions or the decay of correlations.
Instead, its purpose is to develop the graphical representation in full rigor, to establish some
basic results as a foundation for further work, and to serve as an expository introduction to the
area. Perhaps the key results are the strong FKG property (theorems 35 and 62), which gives
rise to many useful properties of the higher FK-Potts (generalized random-cluster) model; and

“expectation equals probability” (theorems 41 and 64), which explains why the coupling is useful.



1 Prelude: The Ising and Potts models and the random-cluster model

This section is an informal introduction to our graphical representation, which is described more
rigorously and in greater generality in section 3.
Recall that the Ising model on a finite box V = {—n, ..., n}¢ C Z4 is the probability distribution

on the spins-on-vertices configuration space L := {—1,+1}V given by

exp (%B Zv~w GVUW)
ZG/EZ exp (%B Zvr\zw G\/)G\//v) ’

ng(o) = B e (0,00), 0€X:={—1+1},
where the sums are over all pairs (v,w) of adjacent vertices in V. (Actually, the Ising model
is more general: Here we’re assuming free boundary condition, uniform interaction strength,
zero external field, and the hypercubic lattice as the underlying graph.) The parameter {3 is
analogous to a physical system’s inverse temperature (reciprocal of temperature as measured from
absolute zero.) The factor H(o) = —% Y v OvOyw, called the Hamiltonian, is a kind of generalized
energy function. As temperature rises, the measure 7g converges to the uniform distribution; as
temperature falls, 7tg puts more and more probability mass on the configurations with most spins
equal. In the infinite-volume limit, an abrupt phase transition appears. There are many ways
to characterize this phase transition—for example, by studying the spatial decay of correlations
between two vertices. The study of this phase transition is inspired by the Curie transition in
physical ferromagnetic materials (although real-world magnets are much more complicated, and
not described very well by the Ising model.)

The slightly more general Potts model (introduced in [Pot52]; see also [Wu82]) allows the spins
to come from a general finite cyclic group Z/qZ, (or rather, a set of size g, because the group

structure isn’t used):

exp (B ywlov = ow])

— Vv

g, q(0) = 5

where [-] is the indicator function.? Different Hamiltonians can be given for this vertex config-
uration space L. Sometimes, instead of H(o) = —) | ., [0y = ow], we take the Hamiltonian

H(o) =—3 .., Ov - Oy Where o, - 0y, := cos 27(0, — 0, ) (now we are using the group structure),

1, P true,

0, P false.
heavy use of the indicator function, so the Iverson bracket was chosen over the notation 1p or 1P in order to keep the
notation clean.

2The symbol [-] is also called the Iverson bracket; for a predicate P it’s defined as [P] = { We’ll make



which gives the so-called clock model or planar Potts model. The clock model was introduced in
the same paper as the Potts model [Pot52]; see also [Dum16, pp. 3—4] for a more modern exposi-
tion. Much more generally, it’s possible to allow the spins to come from an arbitrary compact Lie
group—this is especially useful for studying gauge theories [Cao20, §1.1]. However, we’ll work
exclusively with Z/qZ and the Potts model.

Let E be the set of all nearest-neighbor edges, or “bonds”, between the vertices V ={-—n,..., n}d.
Let Q := {0, 1)E. We'll write edges as ordered pairs e = (v, w), forv,w € 74, always in the forwards
orientation (i.e., the sum of the d components of w is one greater than the sum of the components
of v). For any particular configuration w € Q, an edge e is considered open if w. = 1 and closed
if we = 0. Let o(w) and c(w) be the number of edges that are open and closed, respectively. A
cluster is a connected component in the graph (V, E). Let k(w) be the number of clusters, including
isolated vertices. The random-cluster model is the probability distribution on edge configurations

(1 — p)el@lpol@) gk(w)

(Pp,q(w) = y

ZRC(p)q)
p€(0,1), g€ (0,00), weQ:={0,1},

where the random-cluster partition function Zgc(p, q) is the normalizing constant } 4 (1—p)¢ (w)

k(@) Note that for q = 1 this reduces to independent Bernoulli(p) bond percolation.

pl@q

The random-cluster model with q = 2 is sometimes called the FK-Ising model; with q restricted
to 2,3,4,...,it’s called the FK—Potts model. For these choices of parameter q there are couplings to
the Ising and Potts models, which we’ll now describe.

The Edwards—Sokal coupling [ES88] of the Potts and FK-Potts models is

1

_ p)clw)yo(w)
Zeto (PPl w) < F

Hp,q(o, @) =

pe(0,1), qe{2,3,4,...}, (o,w)eXxQ,

where Zgs(p, q) is the normalizing constant like before, and [(o, w) € F] is 1 if the endpoints of
each w-open edge have equal spins in o, and 0 otherwise. In the former case, we say that the
configuration (o, w) is valid, or that the configurations o and w are compatible, and we let F be
the set of all valid configurations (o, w) € X x Q (the notation F is from [Gri06, p. 8].) So the
measure L q is the product of the iid Bernoulli(p) measure on edges and the uniform measure on

Y, conditioned on the event F.



Note that each open edge imposes a linear constraint on X (viewed as a Z-module): If an edge
e = (v,w) is open in w then, in order for (o, w) € F, it's necessary that o, — 0,, = 0. The closed
edges impose no constraints. This algebraic perspective will be useful when we generalize to
higher dimensions, so we’ll describe it in some more detail. For every edge configuration w € Q,
let Ay, = (Z/qZ)°(®) where O(w) is the set of all open edges in w. Endow A, with the product
group structure, and likewise for £ = (Z/qZ)V. Define a group homomorphism f,, : £ — A,
as follows. For every w-open edge e = (v, w) (oriented forwards) let f,,(o)(e) = oy, — 0y. Then
(o, w) € Fif and only if o belongs to the kernel of f,. Later, we'll call f, the coboundary map, and
elements of its kernel cocycles.

The following result may be found in [ES88; Gri06, §1.4]. We include the proof in full detail so

as to make the general case (proposition 38) more approachable.

Proposition 1. Foreveryp € (0,1)and q €{2,3,4,...}, the probability measure w, (0, w) isa coupling
of g, q and @p,q, where p = —log(1 —p) (or, equivalently, p =1—e P.)

Proof. The first marginal of u,, 4 is (omitting the normalizing factor for clarity)

D bpglo,w) o Y (1=p)@pl@(o,w) € F]

we we
= ) (—pr@pel@ TT [ov=o0w]
we We=

= Z H (1-p) H plov = ow]

we we=0 we=1

e=(v,w)€EE e=(v,w)€EE
= H (1—p)+plov =0w])  (viaexpansion)
(v,w)€eE
= H ([[GVZO'W]]'i‘(] —p)[ov #O'W]])
(viw)€eE

— 1Hv,w)eklov=0wll (1— p)l{(v,w)eElcrv#Gw}\

= exp (B Z [ov # GW]])

(vyiw)€eE
x exp | B Z [ov = ow]
(vyiw)eE

x 7 q(0), ock.



Call an open edge or open cluster in w monochromatic if all its vertices have equal spin in 0. The

second marginal of p, 4 is

Zlip,q(o—)w)

oex

o (1=p)@pel@)  [(o,w) € F]
ceX

= (1—p)¢@pelw) {5 € T : each w-open edge is monochromatic }|
= (1 —p)c(@polw) ‘{G € L : each open cluster in w is monochromatic }]
= (1 —p)cl@polw)gklw) (making k(w) independent choices from q possible spins)

X @p,qlw), w € Q. O

The second part of the proof shows that q*(®) is precisely the number of cocycles, that is,

k(@) — | ker f,|. In higher dimensions, we’ll have to replace the factor q*(“) with a more general

q
expression (actually, we'll just write “number of cocycles”; see eq. (6) and proposition 33.)

The conditional measures of u, 4 have a simple description. To sample a vertex configuration
conditional on a given edge configuration, assign a spin uniformly and independently to each
cluster. To sample an edge configuration conditional on a given vertex configuration, open each
edge uniformly with probability p wherever two incident vertices have equal spins, and leave all
remaining edges closed. See [Gri06, Figure 1.3] for a graphical illustration of these conditional
sampling procedures. For the proof, see proposition 40.

If g = 2 then the probability that two vertices a and b belong to the same cluster is equal to the
expectation of the function (—1)°*~%«. This last expression has a topological interpretation, which
will extend to the higher-dimensional setting. Consider the unitary character [0] — 1, [1] — —1 of
the group Z/27 = {[0], [1]}. An edge path connecting a to b has an oriented boundary consisting of
the two points a and b (actually, orientation doesn’t matter when q = 2.) The product of characters
over this oriented boundary is (—1)°®~ <. The general result is theorem 41, where the product of
characters is denoted by W,,. But here’s a simplified proof of the special case, which is essentially

the same result as [Gri06, Theorem 1.16].

Proposition 2. For every p € (0, 1), every pair of vertices a,b € V satisfies?

7'[[3)2((—])6%’76“) = (Pp,z(a < b),

3The notation 7tz > X indicates the expectation of the random variable X with respect to the measure g ;.




where a < b is the event that a and b belong to the same open edge cluster,and p =1 — e~ B.

Proof. Recall the preceding results about the marginals and conditionals of u, >. Conditioning on

the edge configuration gives

tp 2 (1) @) = 11p.2(0% = 0| @) = 4p 2 (0 # 00 | 0)
1—0 ifa+b,
%—% ifa¢rb

= [a <+ b], w e Q.

The ’%’ is because the conditional measure independently assigns to each open cluster a uniform
spin from Z /27, so distinct clusters’ spins are equal with probability %

Now take expectations with respect to p, > on both sides. O

In the Potts lattice gauge theory, elements of Z/qZ are assigned to the edges of the graph (V, E)
instead of to the vertices. For now we’ll consider only q = 2 (the Ising lattice gauge theory.) A
plaquette is a two-dimensional square of side length 1 embedded in R¢, all of whose vertices are
integer lattice points. Let L be the set of all plaquettes in R9 that are included in the box [-n,n]<.
Then, for every plaquette in L, each of its four edges may be identified with an element of E. In
general, we’ll also need to consider the orientation of the edges (section 2.2), but for q = 2 this may
be ignored because —1 =1 (mod 2).

In the gauge theory we no longer care about the vertex set V, so in place of the graph (V, E)
we’ll work with the hypergraph (E,L). The configuration space for the Ising gauge theory is
T := (Z/27)F. The configuration space for the associated gauge FK-Ising model is Q = {0, 1}': each
plaquette is either closed (0) or open (1). For 0 € Zand Q € L, write og := (—1)%¢1 %2 Te3F 9%,
where e1, e, e3,e4 € E are the four edges incident to Q. We'll say that the configurations o € X
and w € Q are compatible if w(Q) =1 = o0g = 1 for every Q € L; that is, each open plaquette
has even edge sum. Again, let F C £ x Q be the set of compatible pairs of configurations, and
define a probability measure on £ x Q in precisely the same way as before,

tp 2(0, w) = (1=p)@po (o, w) € F], pe(0,).

ZES(p> 2)

Computing marginals using the same technique as above, we see that the first marginal of



Up,2(0, w) is

nB,Z(O-)ZP(]B)Z)GXP (BZ[[O—Q”])) 66(0300)3 GEZ)

QeL

where p = 1 — e~ P as before. The second marginal is

Pp,2(w) (1—p)l@pel®foce | (o,w) €FY, Qe (0,1), weq.

- Zrxp(Pp,2)

The conditional measures, too, are analogous to before. To sample w € Q conditional on o € %,
for each plaquette Q, if oo = 1 then let Q be open independently with probability p, and if
o0q = —1 then take Q closed. To sample o € X conditional on w € Q, pick uniformly an element
of{ce X|(o,w) € F}L

A Wilson loop is a closed walk in the graph (repeated vertices and edges are allowed; also,
we allow the trivial walk with one vertex and no edges.) For a Wilson loop vy of length n > 0
containing edges (eq, ..., en), and for edge spin configuration o € Z, define the Wilson loop variable
W, (o) == (—1)%t%i. According to theorem 41, the Wilson loop expectation 7tg 2 W, coincides
with the probability, with respect to ¢, >, that v is a boundary of some homological surface
consisting of open plaquettes (here q = 2 so a “homological surface” is simply a set of plaquettes;
more generally we consider 2-chains over Z/qZ as defined in section 2.2.) Note the analogy to the
event a <+ b from before: a pathjoining a with b is a one-dimensional surface with boundary{a, b}.
A “Wilson loop” in the classical (non-gauge) Ising model is therefore simply a pair of vertices.

For a thorough introduction to the random-cluster model, see the textbook [Gri06]. For an
overview of the Ising and Potts model, see the lecture notes [Dum?20]. We’ve taken V to be a
fixed-size finite box in the hypercubic lattice, but the essential question is the behavior of Wilson

loop expectations (and other observables) in the infinite-volume limit. More on this in section 5.



2 Preliminaries

We review some prerequisites in algebra and topology. References are listed at the end of each

subsection.

2.1 Finite abelian groups and their duals

The results in this section are elementary, but some of them are hard to find in the literature. For
that reason, they were derived as needed, though of course no claim of originality is made.

Let G be a finite abelian group. A character of G is a homomorphism from G into the circle
group T = {z € C | |z| = 1}. The dual G of G, also denoted by G, is the set of all characters of G
endowed with pointwise group operation (x + V)(g) := x(g)1(g). Note well that the sum of two
characters is their pointwise product (see the discussion on page 40 about conventions.) It can be
shown (by invoking the structure theorem for finite abelian groups) that G = G. The natural (or
canonical) mapn : G — é y g — (x — x(g)) is an isomorphism of G with its bidual (AAS .

The situation is similar to that of a finite-dimensional vector space V: The algebraic bidual V**
is naturally isomorphic to V. In fact, if we take G = (Z/pZ)? for prime p and any d > 0, then
the dual of G as a vector space over the field Z/pZ is precisely its dual as a finite abelian group,
and the notions of natural isomorphism also coincide. This is because every character x : G — T
satisfies, for every g € G, the identity 1 = x(0) = x(pg) = x(g)P, so every element of im(x) is a pth
root of unity. Identify the group of pth roots of unity with the additive group Z/pZ. Conveniently,
scalar multiplication in the vector space (Z/pZ) d by elements of the field Z/pZ is merely repeated
addition, so the character x is a linear functional. And, conversely, every linear functional is a
character.

Now back to the general case. Let A and B be finite abelian groups, and let x : A — B be a
homomorphism. Its dual map «* : B— A, x— xoxisa homomorphism of the dual groups. Note
that (o )* = f* o a* for any two composable homomorphisms o and (3. The operation sending
o to its bidual map o** = (a*)* : f\ — E is compatible with the natural mapsna : A — /2\ and
ng:B — ﬁ in the sense that

o ona =M oaq, (1)



because

**(

Na(9)))(x) = Ma(g) o x™)(x) =nalg)(xo«x)

=x(a(g)) =ns(e(g))(x) = (M o «)(g)(x) for every g € A and x € B.

Equation (1) is essentially what justifies the term natural map.

The annihilator Anng S of a set S C G is the set of all characters that kill S:
Anng S = {X €G | x(s) =1forevery s e S} .

Evidently, the annihilator is always a subgroup of G. We will often drop the subscript and write
simply Ann S when the group G is clear from context.

Let H be a subgroup of G. The restriction to H of any character of G is a character of H. On the
other hand, every character x of H can be extended to a character of G (for a proof via recursion on
the index of H, see [Pey20, §1.2.1, Lemma 1].) The restriction map p : G —» Hisa homomorphism,
as is the inflation map T : G//l\—l -G , X = (g — x(gH)). It’s straightforward to show that the

sequence

—

M-G6/HS6E 0 )
is exact [Pey20, §1.2.1, Lemma 2]. We collect a few consequences for future reference.

Fact 3. Let A and B be finite abelian groups, and let « : A — B be a homomorphism. If « is surjective, then

o is injective. If oc is injective, then «* is surjective.

Proof. If o is surjective, then clearly the two maps «*(x1) = x10x € B and o (x2) =x20x € B
are distinct whenever the maps x1,x2 € A are distinct.
Now assume that « is injective and let \ € A. Let H = im« and define the character

P’ :H — T, «(a) — P(a). Let x be any character of G that extends{’. Then x*(x) = xox =9. O

Fact 4. Let G be a finite abelian group, and H a subgroup of G. Every character of H can be extended to a
character of G in |G|/|H| distinct ways. This holds in particular for the trivial character, i.e, | Anng H| =

|GI/[HI.

Proof. From eq. (2) we see | ker(p)| = |[im(7)| = ‘G//?l‘ =|G/H| = |G|/|H]. Since the restriction p is a

surjective homomorphism, by the first isomorphism theorem all its fibers have equal size |G|/|H|:

10



That is, every element of H can be extended to an element of G in |G|/IH| ways. In particular,

Anng H = ker(p), so | Anng H| = |G|/|H]|. O

Fact 5. For every subgroup H of a finite abelian group G,
1n(H) = Ann(Ann H),

wheren : G — G is the natural map.

Proof. Appling fact 4 with G in place of G and with Anng H in place of H gives

Gl Gl
Annz(Anng H) | = = = |H| = n(H)|.
But every set S C G satisfies 1(S) € Ann(AnnS), son(H) = Ann(AnnH). O

Fact 6. Let G be a finite abelian group. The map Ann : G — G induces a bijection from the set of subgroups
of G to the set of subgroups of G. Moreover, for subgroups A, B of G,

Ann(ANB) = AnnA + AnnB and

Ann(A +B) = AnnA N AnnB.

Proof. Let Sub G denote the family of subgroups of G, ordered by inclusion. By fact 5, the map
Ann : Sub G — Sub G is injective and the map Ann : Sub G — Sub é is surjective. But G = G and
thus Sub G = Sub G. Therefore, Ann : Sub G — Sub G is bijective. It is order-reversing in the sense
that CC D = AnnC 2 AnnD forevery C,D € Sub G. Likewise, the map Ann : Sub G— Subé
is order-reversing, so by fact 5 AnnC O AnnD = C C D for every C,D € Sub G. Thus, Ann is
an order anti-isomorphism* between the partially ordered sets Sub G and Sub G.

Every pair of subgroups A, B € Sub G has greatest lower bound A N B and least upper bound
A + B (i.e., (Sub G, +, N) is a lattice), and likewise for Sub G. Any order anti-isomorphism sends
greatest lower bounds to least upper bounds, and sends least upper bounds to greatest lower

bounds, as can be seen by unrolling the definitions. O

~ ~

As a side note, without proof: the pair of maps Ann : P(G) — P(G) and Ann : P(G) — ZP(G)

form an antitone Galois connection between the powerset lattices (after identifying G with é),

*An anti-isomorphism between partial orders P and Q is a bijection & : P — Q such thatp; < p, < «(p1) > a(p2).
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whose Galois closed elements are the subgroups.

The following result will be used in the proof of proposition 59.

Fact 7. Let A and B be finite abelian groups, and let « : A — B be a homomorphism. Then

()" " o Anna = Anng o and

o«*o (") o Annp o™ = «* o Anng,

where &, o*, &1, and («*)~ " denote the respective induced maps between powersets (e.g., x* : ‘P(E) —
P(A).)

If «* is surjective, then

Anna oo™ ! = «* o Anng.

Proof. For every subset S C A,

()" o Anna )(S) = {x € B|a*(x) € Anna S}
= {x€§|xooc€AnnAS}
= {xeglxeAnnB «(S)}

= (Anng ox)(S).

This proves the first identity. To prove the second identity from the first, compose each side with

o* on the left and o~ ! on the right to get

o* o (") ' o Annp o' = «* o Anngooo .

The right-hand side here is equal to «* o Anng because, for every T C B,

o (Anng (a(a ' (T)))) = o*(Anng(T Nima))
= o*(Anng T + Anng (im «))
= o*(Anng T) + o*(Anng (im «))
= o*(Anng T) +{x 0 a | x € Anng (im )}
= o*(Anng T) +{0}

= oc*(AnnB T)
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This proves the second identity. Finally, if o* is surjective, then o* o (o)~ is the identity on

P(A). O

Fact 8. For every homomorphism o of finite abelian groups,

Ann(im ) = ker(a*) and

Ann(ker o) = im(oc*).
Proof. Let A and B be finite abelian groups, and let o : A — B be a homomorphism. Then

Ann(ima) = {x € B x(b) =0 for each b € im o}
= {xeﬁlxocx:O} = ker(a™), and
Ann(ker «*) = Ann(Ann(im«)) = ng(im «)

= im(a™ omg) = im(o**).

It’s not hard to see that every homomorphism has a predual (because the map « +— «* is a bijection

fromhom(A, B) to hom(ﬁ, R) .) Thus, we may replace o* with « to obtain Ann(ker «) = im(«*). O

Recall the structure theorem for finite abelian groups [Pey20, §1.2.2]; [Rom12, Theorem 5.8],

which states that there exists a direct sum decomposition

1<ign
wheren > 0 and q1,...,qn > 2. By the Chinese remainder theorem, it’s possible to arrange for

each q; to be a prime power.

Definition 9. Given a direct sum of groups G = ;.4 G; or a direct product of groups G =
&Xicqg Gi,° the coordinate projections are the maps pj : G — Gj, (gi)ies — gj, and the coordinate
injections are the maps kj : G; — G, gj — (gj fori=7j, 0 fori # j)icy.

Let @ := kj 0 pj : G — G. (The map @; sets to 0 all coordinates except the jth.)

Wherever it’s necessary to be explicit about the group, we’ll instead write pg j, Kg,j, @g,j. A

Let k > 1 and take ¢ = e?™/¥. It’s easy to show that there is an isomorphism Z/kZ = m

givenby g — (h — Ctg ), where hg is the product of natural numbers h, g [CST18, p. 50]. Moreover,

SRecall that the direct product is the set of all tuples whereas the direct sum is the set of all finitely-supported tuples,
both with componentwise group operation [Rom12, p. 152].
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each character x of a direct sum B ;<,, Gi is specified uniquely by the characters x o «; of the

components, and this identification gives an isomorphism

—

G = P G

1<i<n 1<i<n

N

Combining this with the structure theorem proves that G = G holds for every finite abelian group
G: If G comes with a specified decomposition into cyclic groups, and a generator is specified for
each of those cyclic groups, then there’s a corresponding isomorphism G = G via “components”®

(g1y--ygn) = ((h1y...,hn) = CEQ] L gmom), 3)

n

Let Gy,...,Gn and Hy,..., Hy be finite abelian groups and let «; : Gi — H;i be a homomorphism

foreachi=1,...,n. Define their direct sum & = @; ot; : P; Gi — @; Hi as

P x| (g1, 90) = (aa(gr)y..., an(gn)).

1<ign

—_—

Then we may take the dual o* : @; Hi — ; Gi “componentwise” as

*

D o) - @ o

1<ign 1<ign

(the equality is to be interpreted in the sense of our componentwise identifications éG\l =P Gy,
éﬁi =h I—Ali.) For example, if G; = H; and if each o : Gi — G; is either the zero map or the
identity map, then the same is true of the dual (P; «;)" : G;E i — Gﬁ In other words, if
D; «i may be expressed as a projection onto some subset of coordinates followed by an injection
back into @; Gi, then the same holds for (; «;)*. This will be useful in section 4, so we'll present

two cases formally as facts 10 and 11.

Fact10. Let G = G @ - - - @ G (where n > 1) for finite abelian groups G, Gi, ..., Gn. Identify G with

¢]t’s often pointed out that this isomorphism is non-canonical, and that is indeed the case if we work in the unadorned
category of groups. But it is natural in the category of finite abelian groups decorated with decompositions into cyclic
subgroups and with specified generators for each cyclic component (also, the isomorphism gives special status to the
first primitive qth root of unity for each q.) Unfortunately, the covariant functor involved with this natural isomorphism
is uninteresting, and instead we care about the contravariant functor sending a morphism « to its dual «*. This is why
it's conceptually cleaner to keep separate the two notions of a group and its dual: They are different objects because they
play a role in different operations. This will be made more clear in section 2.2, where « and «* will be the boundary
and coboundary map, respectively.
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6\1 DD é; as above (that is, a character x € Gis identified with (X1,...,Xn) € (/5:1 DD (/5:l where
x((g1,-++,9n)) =x1(g91)x2(92) - - - Xn(gn).)

For every j = 1,...,m, the dual maps of the coordinate projection pg; : G — Gj and the coordinate

injection kgj : Gj — G are the coordinate injection Kg ; : é\] — G and the coordinate projection

CIRE G— é\j, respectively.

bl

Proof. For readability, we prove the result for n = 2 (the proof extends in the obvious way to
arbitrary n.)

Forall g; € Gy and x; € é\l (wherei=1,2),

(PG 1(x1))(91,92) = x1(pc,1(g1,92))
= x1(91)

= (x1,0)(g1,92),

which proves pg ; = kg ;, and

KG,1((x1,x2))(91) = (x1,x2)(xG,1(91))
= (x1,%x2)(91,0)

=X1 (91 ))

. o
which proves kg ; = pg ;- O

Fact11. Let G = G1 @ - - - @ Gy, (where 1. > 1) for finite abelian groups G, Gq, ..., Gn. Identify G with
(/3\1 DD é; as above (that is, a character x € Gis identified with (X1,...,Xn) € é; S RRRN> é:l where

x((g1y--y9n)) = x1(g91)x2(92) -~ Xnlgn).)
The duality relation @ ; = @ g ; holds for every j = 1,...,m (see definition 9.)

Proof. By fact 10, the composition @ j = Kg,j o pg,j has dual a)*GJ- = (Kg,jopg,j)" = p*G,j OKEJ- =

K .O0pPAa .= ~ ..
G,j pG»] (DGJ M

The Fourier transform [CST18, §2.4] of a function f : G — C (for a finite abelian group G) is the
function f: G — C (also denoted F{f}) defined as

~

flx) = Ffx) = Y flglx(g), x€G. 4)
geag

15



Recall that the characters are linearly independent over C; in fact, any two distinct characters
are orthogonal with respect to the standard inner product (f1,f2) = > ;o f1(g)f2(g) [CST18,
§2.3]. The characters form a basis for the C-vector space CS: Every function f : G — C may be

expressed as a linear combination of characters using the Fourier inversion formula [CST18, §2.4]

1 ~
f=G Z fx)x-

XEG

In particular, the Fourier transform J : CS — Cé, fis fisan isomorphism (between vector spaces
over C.)

Next, we derive a simple result that will be used to prove theorem 41.
Fact 12. Let G be a finite abelian group and H a subgroup. Then

1
TAnnH| Z x(g) = [g € H], geG.

XEAnn H

Proof. Consider the homomorphism eg4 : AnnH — C, x — x(g) and its fibers eg] (z), z € C.
By the first homomorphism theorem for groups, all nonempty fibers have equal cardinality. The
image of eq is a finite subgroup of the circle group T C C, so either it coincides with {1} or is
rotationally symmetric about 0. These two cases are distinguished by g € H because of fact 5 (we

haven(g) = eg € Ann AnnH if and only if g € H.) O

Fact 12 is equivalent to the Poisson summation formula—which we won't need directly, but
include anyway for its aesthetic value. This formula may be found in [Ter99, p. 199] and [CST18,
p- 60].

Fact 13 (Poisson summation formula). Let G be a finite abelian group and H a subgroup. For every

function f : G — C, the averages over the cosets of H are

I]HI 2_flgh) = |]G| Y foxle), geG.

heH XEAnn H

Proof. For every h € H, the Fourier transform (eq. (4)) of the function g — f(gh), evaluated at a
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character \ € G, is

Flgr flgh)} () = > f(gh)b(g)

= Z f(g)w(gh—T) (by change of variables g := gh)

Accordingly, the Fourier transform of the left-hand side of the Poisson summation formula, as a
function of g, is

wafﬁ{"])Zw(h), b eG.

heH

The right-hand side of the Poisson summation formula has Fourier transform

P - |é| > W)

XEAnn H

- |é|[[¢ € AnnH] f(W)[G]

= [W € AmmH]f(p), e G.
So the Fourier transforms of the two sides coincide if and only if

1 .
H > ¥(h) = [v€AnnH], PeG.

heH

But this follows by duality (fact 5) from fact 12 by taking G in place of G and Ann H in place of
H. Ul

To justify the earlier statement that fact 12 and fact 13 are equivalent, here is a proof in the other

direction, too.

Proof of fact 12 from fact 13. Let f be the indicator of the identity, f(g) = [g = 0]. Then f = 1. The

Poisson summation formula (fact 13) gives

WX le=nl= o Y X

heH XE€Ann H
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The sum on the left-hand side vanishes if g ¢ H and evaluates to 1 if g € H, so this formula reduces

to

1
locHl = =rm > xlg).

XEAnn H
Now put | Ann H| = |G|/[H] (fact 4.) O

The following is an unrelated inequality that we’ll use to prove theorems 35 and 62.

Fact 14. Let G and G’ be finite abelian groups and let o« : G — G’ be a homomorphism. Let A and B be
subgroups of G, and let D be a subgroup of G'. Then

|6(A+B)+D||a(ANB)+D| < |«(A)+D||«x(B)+D].

In particular,

|(A+B)||[x(ANB)| < |x(A)||x(B)].

Proof. The special case follows from the general case by putting D = {0}. But for clarity we’ll prove
the special case first, and extend to the general case by passing to the quotient G’/D.

The map o satisfies
oa(A+B)=a(A)+ «B) and «(ANB)C x(A)Na(B).

For any two subgroups K, N C G’ the second isomorphism theorem states (K+N)/N = K/(KNN)
and therefore [K + N|[K N N| = |K|[N|. Taking K = «(A) and N = «(B), and combining with the

preceding identity and inclusion, gives

|x(A+B)| |«(ANB)| < |x(A)+ «(B)||x(A) N x(B)|

= ‘oc(A)Hoc(B)!.

This proves the special case D = {0}.
Now letx =mmox: G — G’/D wheren: G’ — G’/D, g’ — g’ + D. For every subset S C G,
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Put o in place of « to get |&(A + B)| [&(ANB)| < |x(A)| [x(B)

, that is,
1 1 1 1
ﬁ|o<(A+B)+D| @\oc(AﬂB) +D| < ﬂ\(x(AHD\ ﬁ}oc(B)JrD\.

Multiplying through by |D|? completes the proof. O

Finally, although so far we have been discussing finite groups only, we will need two definitions

and a result about infinite direct products and direct sums for section 5.

Definition 15. Let G be a finite abelian group and J a set (not necessarily finite.) We will write
G’ = ®G:{f:3—>G} and

iel

GY = @ G = {f:J— G| f(e) =0 for all but finitely many i € J},
ieJ

(The former is the direct product and the latter is the direct sum. Recall that they are both abelian

groups with componentwise group operation, (f + f’)(i) = f(i) + f'(1) for i € J.) A

For infinite abelian groups, the definitions of character and dual group are unchanged from
before. But in general it’s no longer the case that G = G for infinite G. However, we will have use

for the following result, which may be compared to the discussion on page 13 about the finite case.
Fact 16. Let G be a finite abelian group, and let J be a set (not necessarily finite.) There is a group

isomorphism

where
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Proof. To check that 1 is a group homomorphism, we verify

Pix—x) = 1= Kx—xN)

i (g x(xi(g))x'(ki(g) ")
i (g xi(g)x{(g)™ ")

i (xi—xi))

To check that 1 is a bijection, we claim that it has inverse

v G = GO, (Gies o <(9i)ieﬂ '—>HC1(91)>»

iel

where the sum is finite because the element (g;)ics € G?) has finite support. We verify

Wob™ ) ((Ci)ies) = W ((Qi)iej = H Ci(%))

iel

= i (g — ((gi)ieﬂ > HC1(91)> (M(Q)))

ied
= i (g Glg))

= (Ci)ieg, (Ci)ieg € G?

and

A xi)

W o)(x) =¥
= ((Qi)ieﬂ — HXi(EH))

iel]

(gi)ics — Hx(m(m)))

i€g
= ((gi)ieg — x ((91)ie)) (because x is a homomorphism)

= X, XGG(j).
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Throughout, we deal only with abelian groups. Non-abelian groups are more challenging. It
becomes necessary to keep track of higher-dimension representations, because there aren’t enough
characters. In general, for a finite group G, its group of characters G is isomorphic to G/[G, G],
where [G, G] is the commutator subgroup [Pey20, §1.3.2].

For a more thorough introduction to these ideas, refer to [CST18, Chapter 1], [Pey20, Chapters
1, 2], and [Ter99, Part I].

2.2 Cubical homology

We describe the homology theory of certain subsets of R¢ called “cubical sets”. This is essentially
a special case of simplicial homology, where the simplicial complexes comprise axis-aligned cubes
in R4,

We adopt the formalism of computational homology. This is for pragmatic and aesthetic
reasons. First, homology has numerous practical applications to data analysis [PR15], and as a
result there are many software packages available for computing homology groups and related
invariants. It will be easier to set up simulations later if we don’t have to translate between different
conventions. Second, the notation is conceptually crisp, in that it can be quickly defined in full
rigor without any knowledge of differential forms. This makes it (perhaps) more accessible to
probability theorists.

A competing formalism, the discrete exterior calculus, is ubiquitous in the existing literature
on lattice gauge theory. It might be said to enjoy the benefit of greater geometrical clarity—for
instance, the idea of orientation is made explicit. Readers familiar with the exterior calculus of
differential forms may wish to browse the “dictionary”, table 2. It should be stressed that there is
no fundamental mathematical difference between the two formalisms.

Let G be an abelian group (not necessarily finite), and fix an integer dimension d > 1.

An elementary cube of dimension k > 0 (or a k-cube) is a unit cube [0, 11 embedded in R¢ with
vertices lying on the integer lattice Z<. In other words, an elementary cube is a cartesian product
Q =1y x---xIgwhereforeach 1 < i < deither [; = [ny,ni+1]or[; = {n;} forsomen; € Z, and its
dimension dim Q is the dimension of its affine hull or, equivalently, the number of non-degenerate
factors in the cartesian product (here degenerate means a singleton, {n;}.) For elementary cubes
Q' and Q, we say that Q’ is a face of Q if Q' C Q, and a primary face or facet if it is a face with
dim Q' =dimQ — 1.

o
The elementary cell Q associated with an elementary cube Q is the relative interior of Q (i.e.,
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the interior of Q considered as a subset of its affine hull). It’s geometrically intuitive that every
elementary cube is the disjoint union of the relative interiors of its faces (this can be proved by
induction on the dimension of the elementary cube, and holds more generally for all convex
polytopes [Zie94, p. 61].)

Although we’ve defined elementary cubes as subsets of R¢, we’ll employ them only as combi-
natorial elements—what’s relevant is only their dimensions and inclusions between them.

The collection of all elementary cubes is denoted by X; the collection of all elementary cubes
of dimension k € Z is denoted by K. Thus, X = ngo Ky, and Ky = @ fork < 0 and k > d.

A cubical set is a subset X C R that can be expressed as a finite (possibly empty) union
of elementary cubes, not necessarily all of the same dimension. For a cubical set X we define
Ki(X) :={Q € K | Q C X} and K(X) :={Q € K | Q C X}. The collection of all elementary cubes
in X together with their inclusions and dimensions, (X(X), C, dim), is called the cubical complex
associated with X.

As an example, consider the cubical set X = [0, 119 C R9. Then K4(X) = {[0, 119} and Ko (X)
consists of 2¢ singletons (the vertices of X.) It’s straightforward to show that ‘Kk(X)‘ = (S)Zd_k
for0 <k <d.

Note that every (k — 1)-cube (i.e., elementary cube of dimension k — 1) is a face of some k-cube,
thatis, | JXx_1 € UKk for 1 < k < d, but it is not the case that | Kx_1(X) C |J Kk (X) holds for
every cubical set X (for example, if X is the singleton {0} then | X, (X) ={0} € @ = J K1 (X).)

If X is a cubical set with K (X) = @ for all k > 2, then the cubical complex X (X) may be viewed
as a finite graph G = (V, E) = (iKo(X),ZK1 (X)) embedded in R9.

A (cubical) chain of dimension k € Z (or simply a k-chain) with coefficients in G is a finitely-
supported map Ky — G. More formally, define Cy(G) to be the direct sum Py G; the elements
of Cy(G) are called k-chains. For a chain ¢ € C(G) and for Q € Ky, the group element c(Q) € G
is called the coefficient of Q in c.

Now fix some cubical set X C RY. For every k € Z we define Cy(X,G) = @ﬂck(x) G. An
element c € Cy (X, G) will be called a k-chain in X. So a k-chain in X is an assignment of an element
of G to each k-cube in X. In particular, Cy (X, G) is the trivial group whenever k < 0 or k > d. We
identify Cy (X, G) with a subgroup of Cy(G) in the obvious way, by putting coefficient 0 on every
k-cube outside X.
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If Q € Xx(X) and g € G, then gg will denote the k-chain

9, Q:P}

0, Q#P.

go(P) =

In particular, if G is the additive group of a ring with additive identity 0 and multiplicative identity
1, then the element 1 € Cy (X, G) is the indicator of Q.

Next, we define a boundary operator, which sends a k-chain to a (k — 1)-chain. For a k-cube
Q € Xy and for g € G, the following definition specifies the boundary of g to be a chain
supported on the facets of Q whose nonzero coefficients have values g, with opposing signs on
each pair of opposing facets, and extended by additivity to all of Cy (G). To make this precise, write
Q =1; x---xI4 C R4 where each factor Jj is either degenerate (a singleton) or a unit interval, and
label the nondegenerate factorsas I, ..., I;, withi; < ... < iy, assuming for now that 1 <k < d.

For 1 <j <k, denote the jth pair of facets of Q as

Q;::h X"'XIij—1 x{mj}xlijﬂ X -+ x g,

QJ.Jr =Ty x - x Ty x {my + 1) x T 4q x -+~ x Ig where I, = [my, m; + 1].

For 1 < k < d, the boundary operator 9y : Cy(G) — Cx—1(G) is

9o = Y (1" (9gr —9q- ),
1<i<k

extended by additivity to all of Cy(G). Note that each elementary cube comes with an ordering
on its coordinates, and the boundary operator depends on this ordering: some of the signs of the
boundary will change if coordinates are permuted, because of the (—1)J~" factor. This defines
Ok : Ck(G) = Cx—1(G) for 1 < k < d. Observe that the operators 9y are group homomorphisms.
For k < 0 and k > d, define 9y : Ci(G) — Cx_1(G) to be the zero homomorphism (this is the only
option because Cy (G) is trivial for k < 0 and k > d.) An alternative definition for 0y is given in
[KMMO04], where the definition above is listed instead as a result [KMMO04, Proposition 2.36].

We also define 9y : Ci(X,G) — Cx_1(X, G) to be the restriction of 9y to Cx(X,G). To keep
the notation compact, we’ll avoid indicating the domain explicitly (by writing something like
0k (X, G).) The domain for 9y will always be clear from context. Furthermore, in most contexts it

won’t cause confusion to write 0 in place of y.
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A helpful special case to consider is G = Z/27Z, where +1 = —1 so all signs on coefficients
may be ignored. For more general G, negating a coefficient on an elementary cube may be
thought of as reversing the orientation of the cube (though we do not explicitly define orientation.)
The alternating-sign convention in the definition of 0y is arranged for the sake of the following
boundary-of-boundary result (fact 17). This result is essential to every homology theory. There is a
proof by induction on d in [KMMO04, Proposition 2.37], which is written for G = Z but carries over

to the general case with only trivial modifications. The proof presented below is much simpler.”

Fact 17 (Boundary relation). For every k € Z,

ak_] o 6k =0.

Proof. For k < 1and k > d the result is trivial, so assume 2 < k < d. With Q as in the definition of

Ok, for1 <j <€ <klet

Qj ¢ =D x - x Ty x{my} x Lijqq xoeee X T, 1 x {med x Tippr x - x g,

Qj_j::h X oo x Log x{my X L X x Li,o1 x {me + 1} X Lipq x -+ x Lg,
T x L my 1 Ly pg X x Ty % {me) x Typqq x -+ x I,
=L x L ) {my F 1 X Ly X x Typo1 x {me+ 1} x Ty x -+- x I,

where [;; = [m;, mj + 1] and I;, = [m¢, m¢ + 1]. Applying the definition of the boundary operator

twice shows

— _1y—1 1)y’ g — _ _
(010 04)(90) - = (9051 — 90,1 — 905 + 90, )

™

1

N

j’<j<k

+ (1) T (1) (9 79y, 9 T Qf}f,ﬁ)

35’ +1 ISIER ISR Js

@
&
A
A

I
™

o
=D (9g — 0y — 90y, + 9,

1<j/<jgk
+ =" (905, — 9055, — 90, T 90,,)
1<) <<k | | | |
—0. N

Example 18. Let Q be a 2-cube (a plaquette). Then 929 is supported on its four edges. The signs

"Thank you to Anthony Quas for pointing out this “two-line proof”.
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on the opposing sides of the plaquette may be thought of as orientations for the edges. If the edges

are visualized as directed arrows, then the four arrows all sit head-to-tail. The boundary of each

edge is supported on its endpoints, and the net contribution to each of the four vertices is 0.
More explicitly, let d = 2 and Q = [0, 1] x [0, 1] C R2. In the notation above, I; = I, = [0, 1] so

i1 = lTand i, = 2. We have

QT = {0} X [O) ”) Q; = [O) 1] x {O})
T={1}1x100,1, Q3 =01 x{1}

So forevery g € G
929Q = 9o} ~9q; ~9Q; *9q;-

Now consider Q; = {0} x [0, 1]; this has one nondegenerate interval, i1 = 2. So (and similarly for

the other three 1-cubes)

Q)7 ={0 x{0},  (Q3)7 ={0} x {0},
Q)7 ={0rx {1}, (Qy)7 ={1}x {0},
Q)7 ={1}x{0},  (Q3)7 ={0} x {1},
QD)7 ={1= {1}, (Q3)7 ={1}x {1}

Therefore, writing (i,j) := {i} x {j} as shorthand,

01(029qQ) = 919q+ —019q, —9190; + 0190,

= (9o ~9en) = enr —9eny) — G-y + 9 —9ien))
= (g9(1,1) —9(1,0)) — (9(0,1) — 9(0,0)) — (9(1,1) — 9(0,1)) + (9(1,0) — 9(0,0))

= 0. JAN

The collection (Cy(G), Ox), ., is called the cubical chain complex for R® with coefficients in G. The

kEZ
collection (Cy(X, G), k), ¢z, 18 called the cubical chain complex for X with coefficients in G.

The groundwork is now in place to introduce the central concepts of homology theory.

Again, fix a cubical set X C R4, For k € Z, a k-cycle in X is an element of Zy(X,G) :=

ker 0x. A k-boundary in X is an element of By (X, G) := im 0y1. Since the boundary map is a
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group homomorphism, both Zy (X, G) and By (X, G) are subgroups of Ci (X, G). By fact 17, every
boundary is a cycle. To see how the converse can fail, let X be the union of the four edges of a single
plaquette (i.e., 2-cube.) Let G = Z/27 and assign 1 € G to each edge. The 1-chain so obtained is a
cycle, but not a boundary, because the plaquette itself is missing from X.

Speaking informally, the failure of a k-cycle to be a k-boundary indicates the presence of a hole
in the complex. If k = 2 the hole is a 3-dimensional void (as in Swiss cheese); if k = 0 the hole
is an additional connected component (this last part will be made clear later.) But actually, the
situation is more subtle: the presence and absence of holes depends on the coefficient group. For
an illustration of this phenomenon, see section 6.1.

The kth homology group of X with coefficients in G is the quotient group Hy (X, G) := Zx (X, G)/
Bk (X, G). The homology of X with coefficients in G is the sequence H. (X, G) := (Hk(X, G))kez. An
element of a homology group (that is, an equivalence class of cycles modulo boundaries) is called a
homology class, and any two cycles belonging to the same homology class are said to be homologous
to one another.

The cases G =Z, G = Q, and G = Z/qZ (for q > 2) are called the integral, rational, and mod-q
homology. In the literature on algebraic homology, the omission of the coefficient group—writing

simply Hy (X)—usually indicates the integral homology.®

Example 19 (Homology of a graph). Let X be a finite union of 1-cubes and 0-cubes in Z¢. Then
X may be viewed as an undirected graph Gx = (V,E) = (iKo(X), X1 (X)). (Every finite subgraph
of the hypercubic lattice has this form.) Then Ho(X,Z) = Z™ where n is the number of connected
components of X. To see why, notice that every 0-chain is a 0-cycle, and the 0-boundaries are
generated by the chains of the form 1, — 1,, where v and w are vertices belonging to the same
component; therefore, each element of Ho (X, Z) is an equivalence class of chains that all have the
same sum of coefficients within each component (more generally, see fact 25.) Also, H1(X,Z) =Z™
for some m > 0, because there are no 1-boundaries and every nontrivial 1-cycle has order oo in the
group C1(X,Z). The rank m may be thought of as the maximal number of independent cycles in
the graph. All other homology groups are trivial. It can be shown that n — m = [Ko (X)| — [K; (X)]
(this is closely related to Euler’s polyhedron formula, V — E + F = 2.) We'll see a generalization of
this identity in fact 24. A

Example 20 (Homology of an elementary cube). Let X = [0, 1] x{0} C R?. In the integral homology,

8By virtue of a result known as the universal coefficient theorem, the integral homology groups determine the
homology groups with coefficients in any other abelian group [Mun84, p. 313].
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the 1-chains have the form n(y ;; where n € Z (X has only one 1-cube, [0, 1], and a chain is an
assignment of a coefficient n to that 1-cube). So the 0-boundaries are the O-chains ny; — nyg;
for n € Z. The O-cycles are the O-chains, which have the form agy, + byyy for a,b € Z. Thus,
the homology group Ho(X,Z), defined as the quotient of the O-cycles by the 0-boundaries, is
isomorphic to Z. The homology group H1 (X, Z) is trivial because the only 1-cycle is Ofg 1.

More generally, if X is a single elementary cube of any dimension in R¢, then [KMMO04, pp.
79-80]

A k=0,
Hk(X)Z) = AN

0 (the trivial group), k #0.

Example 21 (Homology of a sphere). For 0 < n < d, Let X be the boundary (in the sense of general
topology) of an (n+ 1)-cube, so that X is homeomorphic to the n-sphere. It can be shown [KMMO04,
pp- 90, 303] that if n > 0 then Ho(X,Z) = Hn(X,Z) = Z, and if n = 0 then Ho(X,Z) = 7?2, and for
all n that Hy (X, Z) = 0 for k # 0,n. (More concisely, Hx (X,Z) = zx=01+[k=nl for all k and n.)

The geometric intuition (for n > 0) is the following. The n-sphere for has one connected com-
ponent; therefore, Ho (X, Z) = Z. It encloses one (n+ 1)-dimensional void; therefore, H, (X, Z) = Z
(because an n-cycle is determined completely by the coefficient on a single n-face of the void, and
there are no nontrivial n-boundaries.) The fact that the other homology groups are trivial is more
complicated to prove directly, but geometrically it has to do with the absence of voids of other

dimensions. A

Example 22 (Homology of the 2-torus). Let X C R3 be a union of 32 plaquettes as shown in fig. 1,
so that X is homeomorphic to the 2-dimensional torus.’

There are no 3-cubes in X, so there are no nontrivial 2-boundaries. To understand the 2-cycles,
notice that since every edge belongs to exactly 2 plaquettes, the coefficient on a single plaquette
uniquely determines the coefficients on all the remaining plaquettes. So Z, (X, G) is (isomorphic
to) G. Thus, H2(X, G) = G, too.

Every 1-cycle is homologous (that is, equal modulo a 1-boundary) to some 1-cycle whose
support is a subset of the 8 edges shown in bold in fig. 1, which form two independent loops
encircling the torus. This can be seen by algorithmically building up an appropriate 2-chain, one
plaquette at a time, whose boundary cancels out the coefficients on all other edges. Moreover, it’s

not hard to see that every homology class contains only one such cycle. But a cycle supported on

?Alternately, though it’s harder to visualize, we could build a torus using just 16 plaquettes in R*. This discrete
“Clifford torus” is a subset of the boundary of a 4-cube.
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these two loops is determined by one coefficient picked freely for each loop, so H; (X, G) = G2.
As in the previous examples, X is connected, so Ho (X, G) = G. All other homology groups are

trivial. To summarize, for any (abelian) coefficient group G,

G, k=0,
G?, k=1,

Hk(X) G) = A
G, k=2,

0 otherwise.

Figure 1: The discrete 2-torus

Example 23 (Homology of the Klein bottle). Let X C R* be (homeomorphic to) the Klein bottle.
Then [Mun84, pp. 37, 52]

Z, k =0,
He(X, Z) = SzZz®272/22, k=1,
0 otherwise,

727, k=0,
(Z/ZZ)2> k=1 )
but  Hy(X, Z/27) =
727, k=2,

0 otherwise.

It’s worth spending some time to understand this example. There is one nontrivial 2-cycle mod

2: assign coefficient 1 € Z/27 to each plaquette in X. To see why there are no nontrivial 2-cycles
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over Z, we argue by contradiction: in any 2-cycle, the coefficient on a plaquette determines the
coefficients on its adjacent plaquettes, but after wrapping all the way around the Klein bottle we
end up with the wrong signs on the coefficients. This yields, however, a 1-boundary with even
coefficients, which is the source of the Z/2Z summand in H (X, Z). To be more explicit, let c be
the cycle that assigns 1 to each edge along some closed loop encircling the neck of the Klein bottle.
Then c is not a boundary, but 2¢ is a boundary. This is an example of a torsion [Sti93, pp. 170-171].

We see that the mod-2 homology of the Klein bottle coincides with the mod-2 homology of the
torus, but their integral homologies are distinct [Mun84, p. 52]. A

The kth Betti number 3y (X,Z) of X is the rank of the group Hy(X,Z) (that is, the number of
copies of Z in its cyclic decomposition.) So for the Klein bottle 3¢(X,Z) = B1(X, Z) = 1 and
Br(X,Z) = 0 for k # 0,1. For q > 2 we have Hy(X,Z/qZ) = (Z/qZ)™ @& T for some my and
some group T whose every element has order strictly less than q (according to the decomposition
theorem for finite abelian groups), so we can define the kth Betti number with coefficients in Z/qZ
to be B« (X,Z/qZ) := my (i.e., the rank of the kth homology group over Z/qZ.) In particular, for
prime p we find By (X,Z/pZ) = logp }Hk(X, Z/pZ)‘. We can describe the homology groups, or
for that matter any finitely-generated abelian groups, by their (integral) Betti numbers and forsion
coefficients, which come from the cyclic decomposition. But arguably Betti numbers are passé, and
the modern approach is to work with the homology groups directly. Historically, Betti numbers
and torsion coefficients came first. The connection to group theory was made in 1926 by Emmy
Noether [Sti93, p. 171].

We will, however, have use for the following result. See [Die08, pp. 308-310] for the details and

the proof in the more general setting of cellular homology, and for historical references.

Fact 24 (Euler-Poincaré Theorem). For every cubical set X C RY, and every integer q > 2,

D ENDMKGX) = ) (DX, Z) = ) (=1)*Br(X, Z/qZ).
k>0 k>0 k=0
The value of the sums in the Euler—Poincaré Theorem is called the Euler characteristic of X, and is
denoted x(X). The theorem states that the “combinatorial Euler characteristic” coincides with the
“homological Euler characteristic”. For the plaquette 2-torus (example 22) the left-hand equality
becomes 32—64+32 = 1—2+1. For the Klein bottle (example 23), the right-hand equality becomes
1—1=1+2-1.

29



Fact 25. For every cubical set X C R4, and every abelian group G,
Ho(X, G) = G*X)

where k(X) is the number of connected components in X. In particular, 3o(X,Z) = Bo(X,Z/qZ) = k(X)
forall q > 1.

Proof. This was already shown in example 19 for the case where X is a graph and G = Z. The proof

of the general case is identical. O

Often it’s useful to add an “empty face” of dimension —1 to each cubical complex. That is, let
& be the sole (—1)-cube, and consider it to be a face of every other elementary cube. This gives the
so-called reduced homology, indicated by writing tildes above all symbols as below. The reduced
homology eliminates many special cases in the statements of theorems and proofs in homology
theory, though it’s conventional (at least in introductory treatments) to work with the non-reduced
homology. We'll use the reduced homology only to define cyclic boundary spin conditions in
section 4, and in proposition 59, so these definitions can be omitted on the first reading.

The augmented cubical chain complex of X is the collection (Cy(G), dk), ., where

~ G fork =—1,
Ck(X’ G) =
Ck(X,G) fork #—1,
c— Z c(Q) fork =0, (i.e., sum of c’s coefficients on all vertices Q)
_ QeXo(X)
Ok = 0 fork =—1,
Oy for k #0,—1.

It’s easy to augment the proof of the boundary relation (fact 17) to show 5k_1 o 5k = (. This leads
to reduced boundaries gk(X, G) =im 5k+1 , reduced cycles ék(X, G) = ker 5k, reduced homology groups
Hi (X, G) = Ci(X, G)/Bi(X, G), and the reduced homology H..(X, G) := (ﬁk(X, G))yez (We'll have
no use for the reduced Betti numbers.) The change is not particularly significant, as the following

result (stated as [KMMO04, p. 90, Theorem 2.95] for G = Z) indicates.
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Fact 26. If X is a nonempty cubical set then

Ho(X,G) & G, k=0,
Hk(X) G) =

Hy (X, G), k # 0.
Proof. 1t’s only necessary to examine k = 0 and —1 (the other cases are trivial.)

Let k = 0. A reduced 0-cycle is an assignment of coefficients to lattice points in X such that the
sum of all coefficients is 0. The cosets modulo the 0-boundaries are characterized by the sums of
coefficients on each component, and the sum on the last component is determined by the others.
So ﬁo (X, G) = G™~! where m is the number of connected components.

Let k = —1. Every chain is a cycle, and every chain is a boundary because X is nonempty. So

H_(X, G) is trivial. O

Next, we describe the cubical cohomology, which for us will be essential.

The cubical cochain complex for X with coefficients in G, (C*(X, G), &%) is defined by duality.

kez’

Let hom(A, B) be the group of all group homomorphisms from abelian group A to abelian group
B (the group operation on hom(A, B) is defined pointwise.) We define
C*(X,G) := hom(Cy(X,G), G), zeZ

and

8% . C*(X,G) = C*1(X, G),

Cc+— co 0k, k € Z.

The elements of C*(X, G) are called k-cochains, and the map &* is called the coboundary operator.

See fig. 2.

Ox_1 [eJ% Ok 11 Ox+2
- Cx Ck Crp1 «— -+
) k—1 Kk K+1

6k72 C Ekfl C 5k C 5k+]

Figure 2: Chain complex and cochain complex

It's common to use the angle-bracket notation for evaluation, (a,b) := a(b) for a € Ck(X,G)
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and b € Ci(X, G), and in this notation
(8kc, d) = (c, Oxp1d) forc e C*(X,G)and d € Cyy1(X,G).

This boundary—coboundary duality relation—for us, true by definition—is sometimes called the
discrete Stokes theorem. It's also possible to give a different definition of % and derive this result as
a genuine, albeit trivial, theorem (this is done in [FLV21, §2.3.2].)

Again, it’s most common to take G = Z, as in [KM13]. But for us the most relevant coefficient
group willbe G = Z/qZwith q > 2. Accordingly, recall the notation for group duality in section 2.1.
When G = Z/qZ, we may identify hom(Cy (X, G), G) with Cx(X,G)™ ( := hom(Cx (X, G), T)) via
the embedding G — T, [j] — e2™/4 because the order of every element of Cy (X, G) divides q.

So we may write

C*(X, Z/q7)

Ck(X> Z/qZ)Aa

o = 9%, keZ

The composition of adjacent coboundary operators is 0, just like with boundary operators.

Fact 27 (Coboundary relation). For every k € Z,
§%o 8% = 0.
Proof. By fact 17,

<5k5kilc, d) = <5k7]C, Ok+1d) = (¢, 0x0x41d) = (¢, 0) =0

forc e C*1(X,G)and d € Cy11(X, G). O

A k-cocycle in X is an element of Z*(X, G) := ker8*. A k-coboundary in X is an element of
B¥(X,G) := im8*~'. Every coboundary is a cocycle (fact 27) so we define the kth cohomology
group of X with coefficients in G to be the quotient group H*(X, G) := Z*(X, G)/B¥(X, G), and the
cohomology of X with coefficients in G to be the sequence H*(X, G) := (H*(X, G)), ;-
Notice that if ¢ is a k-boundary and d is a k-cocycle, then by the discrete Stokes theorem

(d,c) =0.1

10Tn the (non-discrete) calculus of differential forms, the corresponding statement specializes to a classical result from
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The following example is essential for the application to the Potts gauge theory.

Example 28. Let G be a (finite or infinite) cyclic group with generator 1. Then a k-cochain, being a
group homomorphism, is determined by the values it assumes on the chains 1¢ forall Q € Ky (X).
Thus, C¥(X,G) may be identified with Cy(X,G), and under this identification (,-) is the dot
product of coefficient vectors (with respect to the usual ring multiplication on G). For a chain
c € Cx(X, G), write ¢ € C*¥(X, G) for the corresponding cochain under this identification.

If Q is an edge in X then the coboundary &' 1/5 is a 2-cochain that puts coefficients +1 on all

plaquettes in X incident to Q, and 0 on all other plaquettes. A

We can also define augmented cochains, reduced coboundaries, reduced cocycles, and reduced
homology groups ﬁk(X, G): Let ék(X, G) be the dual of ék(X, G), let 5% be the dual of 5k+1 ,and
define the remaining objects analogously.

There is a result called the Poincaré Lemma that gives sufficient topological conditions on X so
that all reduced cohomology groups are trivial, i.e., every reduced cocycle is a reduced coboundary.
See, for example, [FLV21, Lemma 2.2] or [Des+05, §11].

Table 1 summarizes our notation. For a lengthier explanation of (integral) cubical homology
theory, see [KMMO04] and [KM13].

The machinery of cubical homology can be developed in several different ways. The approach
we’ve followed, from [KMMO04], is similar in flavor to simplicial homology. There is also a cubical
variant of singular homology (see the remarks in [KMMO04, §2.8] and [KM13, §1].) Another method
(as explained in the introductory paragraphs to this section) is to use a notation reminiscent of the
exterior calculus of differential forms, which may be more familiar to readers who have worked
with de Rham cohomology. This discrete exterior calculus is used in many papers on lattice gauge

theory, e.g., [Cha20; Cao20; FLV21]. For more comprehensive references see [Des+05] and [Cra23].

2.3 Probabilistic couplings and the stochastic ordering

This section reviews some basic probabilistic tools that will play a major role in what follows.

Let (Q1,A1,u1) and (Q2, Az, n2) be probability spaces. A coupling of 1y and u; is a probability
measure [ on the measurable space (O x Qj, A7 ® A,) whose first and second marginals are
u1 and pp, respectively. In other words, the pushforwards of u under the coordinate projections

p1 : (wy,w2) — wiy and py : (wy,w2) — wy are p1pu = g and pop = py. This definition

vector calculus: A curl-free vector field in R has circulation 0 along any closed loop that bounds a surface.
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Symbol Meaning

Ky C P(RY) Elementary k-cubes in R¢ for 0 < k < d, empty otherwise

X C P(RY) All elementary cubes in R4

X C R4 A cubical set: a finite union of elementary cubes from X

Ky (X) The (finite) set of all k-cubes in X, i.e., {Q € Ky | Q C X}

X(X) All elementary cubes in X, ie.,{Q € X | Q C X}

Ck(X, G) All k-chains: The group GXx(X); trivial fork < O and k > d

go forge Gand Q € Xy (X) The k-chain that takes value g on Q, and 0 on all other k-cubes
1q for Q € Ky (X) The indicator of Q in Ci (X, G), when G is the additive group of

a ring with identity 1
(OQ forQe X The associated elementary cell: The relative interior of Q

Ok : Cx(X,G) = Cx—1(X,G) Boundary map (a group homomorphism)

By (X, G) All k-boundaries: The image of 0y 1

Zy (X, G) All k-cycles: The kernel of 9y

Hy (X, G) The kth homology group: The quotient Zy (X, G)/By (X, G)
Ck(X, G) All k-cochains: The group hom(Cy (X, G), G), equal to the dual

Ck (X, G) when G = T or when G is a finite subgroup of T
§k: C*(X,G) — C**1(X,G) The coboundary map—the dual 9y, ,

BX(X, G) All k-coboundaries: The image of Sk
Z*(X,G) All k-cocycles: The kernel of ok
Hk(X, G) The kth cohomology group: The quotient Z*(X, G)/B*(X, G)
Bk (X, Z) The kth Betti number of X with integer coefficients: The
rank of the group Hy (X, Z) (i.e., the rank of its torsion-free part)
Bx(X, Z/qZ) for q > 2 The kth Betti number of X with coefficients in Z/qZ: The
rank of Hy (X, Z/qZ) over Z/qZ
x(X) The Euler characteristic Zk>o (=1)¥| K (X)]

Table 1: Notation for cubical homology and cohomology. Here k € Z and G is a finite abelian
group.
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Discrete exterior calculus of differential forms Cubical homology

oriented 0-cell x, x~ for x € Z¢ 0-cube, or vertex, Q € Xy, not oriented
oriented edge dx;, 1 <i<d 1-cube, or edge, Q € X1, not oriented
k-form dxi, A --- A dxy, k-cube Q € Xy, not oriented

G-valued k-form f k-cochain ¢ € C*(X, G)

exterior derivative df of G-valued k-form f coboundary §*c of k-cochain ¢
coderivative 6f of G-valued k-form f boundary 0dyc of k-chain c

closed k-form k-cocycle

exact k-form k-coboundary

closed surface 2-cycle

Hodge duality dual cubical structure and Poincaré duality,

not explained here

Table 2: Dictionary for translating between discrete exterior calculus and cubical homology

extends to arbitrary (finite and infinite) collections of spaces: a coupling of an indexed family of
probability measures ((Qy, Ai, 1i)); ¢q is a probability measure p on the product measurable space
(ITicy Qiy ®;cqAi) that satisfies pipu = p; for every i € J.

Couplings can often be identified with (equivalence classes of) probability kernels. Recall that

a probability kernel from (Qq, A1) to (Q2,Az)isamap K: Q7 x Ay — [0, 1] such that
(i) the map E — K(w1, E) is a probability measure for each w; € Q7, and
(ii) the map w7 — K(wr, E) is measurable for each E € A,."

Every probability kernel K from (Q1,A1) to (Q2,A2) and every probability measure p on
(Q1,A1) together induce a probability measure p1; ® K on the product measurable space (7 x
Q;, A1 ® Az), defined by

(111 ® K)(E) :=J m(dwﬂJ K(ws, dws)1e (w1, ws), E €A1 @Ay,
[ON Q>

The opposite procedure—starting with a probability measure p on (Q7 x Qj, Ay ® A,) and
obtaining from it a transition kernel—is called disintegration of measure. 1f (QQ;,A;) is a standard
Borel space (as tends to be the case in applications), then there exists a probability kernel K from

(Q1,A1) to (Q3,A2) such that p = (p1u) ® K (here, as before, p1p is the marginal of u on the

1Tt suffices to check this condition over a generating m-system for A, [Klel4, pp. 180-181].
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first factor.) In the case that ()7 and (), are both finite, this result follows immediately from the
definitions: let K(x, -) be the conditional measure p(- | w; = x) whenever p(w; = x) # 0 and pick
K(x, -) arbitrarily for all x with p(w7 = x) = 0. The general case is more subtle. The reader may
consult [(in11] or any other introductory text on measure-theoretic probability.

Once we have a probability kernel, we can use it to push forward probability measures from
(Q1,A7) to (Q3,A3) or pull back functions from (Q;,A>) to (Q1,.A7), and these two operations

are compatible, as stated in the following well-known theorem [Cin11, Theorem 6.3].

Fact 29 (Measure—kernel-function theorem). Let (Q1, A1) and (Q3,A2) be measurable spaces, and K

a probability kernel from and (Q1, A1) to (Q3,A2). Define
Kfz(wq) = JQ Klwr, dw2)f(wz), wi €y
2

for every measurable function f, on Q) which is either nonnegative or bounded. For measurable f; : Oy —
[0, o0], this defines a measurable function Kf; : Q1 — [0, col. For bounded measurable f; : Q; — C, this
defines a bounded measurable function Kf; : Q7 — C.

Define

WK(E) = JQ wi(dwr)K(wr, ), E €A
1

for every probability measure y on Qq. This defines a probability measure wi K on (Q3,Az).

Furthermore,

(WK = i (Kfs) = j mdwnj K(wr, dews)f2(ws)

(O} Q>

for all wy and £, considered above.

Proof. The case of f; : O, — [0,00] is proved in [Cinl1, Theorem 6.3] by a standard measure-
theoretic argument. By subtracting an arbitrary constant, the result extends to every bounded

f2 : QO — R. The case of bounded f, : O, — C follows by linearity. O

It’s immediate from the definitions that u; K = p> (1 ® K) for all n; and K as above.
Readers familiar with dynamics might recognize fact 29 as the non-deterministic generalization
of the identity [f, dT.pu; = [f2 0T duy, where T is a measurable map from Q; to Q;. We can

recover this deterministic identity by taking K(x, -) to be the point mass dt. In this case, the map
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w1 — p1Kis the pushforward operator with respect to T, and the map f, — Kf; is the Koopman
operator f; — fa o T.

Furthermore, if both O and Q; are finite, then K may be identified with a right stochastic
matrix. Writing 17 and f, as row and column vectors, respectively, the definitions given in fact 29
reduce to matrix multiplication, and the identity (u1K)f, = py(Kf;) is by associativity of matrix
multiplication [Cinl1, p. 46, Exercise 6.31]. This observation is relevant to section 3.4, where we
discuss transferring observables between two models. (For the sake of completeness: The operation
11 ® K corresponds to taking the matrix product diag(p;)K and interpreting the resulting matrix
as a joint probability mass function.)

Now we discuss the stochastic ordering. For a partially ordered set P, a function f : P — R
is increasing (or monotone'?) if x <y = f(x) < f(y). A set S C P is increasing (or monotone) if
its indicator 1s is an increasing function, that is, if x € S = y € S whenever x < y. Given
two probability measures p and ' on P, we say that w is stochastically smaller than p’, or that p
is stochastically dominated by ', and write p <g p’, if the pair p, p’ satisfies any of the equivalent

conditions given in the following theorem.

Theorem 30 (Strassen’s'® theorem, finite version). For probability measures pand w’ on a finite partially

ordered set P, the following are equivalent.

(i) uE < W'E for every increasing event E C P.
(ii) uf < w'f for every increasing function f : P — R.

(iii) There exists a coupling v of wand ' such that v{(x,y) € P x P |[x <y} =1.

Proof. (iii) = (ii): For increasing f : P — R,

uf = Jf(x) dv(x,y) = Jf(X)lxgy dv(x,y)

< Jf(y)lxgy dv(x,y) = Jf(y)dv(x,y) _—

2The official terminology from order theory is monotone (or order-preserving or occasionally isotone) but in analysis
and probability it’s common to use the ambiguous term increasing. To say that f : R — R is “increasing” might mean,
depending on the author and context, that f is monotone, or strictly monotone (x <y = f(x) < f(y)), or inflationary
(x < f(x) for all x).

13This theorem is traditionally attributed to Strassen [Str65, Theorems 6, 11], who proved it in the context of Polish
spaces. But other variants had apparently [Str65, p. 432] already been published in 1961 by Kellerer [Kel61] and Dall’Aglio
[Dal61]. Our theorem 30 and theorem 31 are considerably less general than the results in any of the aforementioned
papers.

14We use the probabilist’s de Finetti notation: For probability measure p on Q) and random variable X : Q — C, we
write uX := E, [X]. A measurable set E C Q is identified with its indicator 1¢.
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(il) = (i): Take f = 1.
(i) = (iii): See [LP16, Theorem 10.4] for a short proof of the equivalence (i) <= (iii) via the

max flow min cut theorem. ]

Besides the case of finite P, we’ll also be interested in P = {0, 1}F for a countably infinite set E.
Endow P with pointwise ordering, product topology, and Borel o-algebra (which coincides with
the cylinder o-algebra.) We write pu < p’ if the pair p, p’ satisfies any of the equivalent conditions
given in the following theorem.

Note that every increasing real-valued function on P is bounded because P has a least element

and a greatest element, so the expectations in the theorem statement exist.

Theorem 31 (Strassen’s theorem, countable version). For probability measures wand p' on P = {0, 1},

the following are equivalent.

(i) uf < W'f for every measurable increasing function f : P — R.
(ii) uf < p'f for every continuous increasing function f : P — R.

(iii) There exists a coupling v of wand ' such that v{(x,y) € Px P |[x <y} =1.

Proof. (iii) = (i): Argue as in the proof of theorem 30.

(i) = (ii): Trivial.

(i) = (iii): Take a sequence of finite sets E; C E; C --- — E, and for every n > 1 let p, and
w,, be the respective marginals of i and p’. By (ii), every increasing function f : E,, — R satisfies
unf < p/ f. By the finite version of this theorem (theorem 30), there exists a coupling vy of pn
and p}, such that vo{(x,y) € {0,1}*» x {0,1}F» | x <y} = 1. After passing to an appropriate
subsequence we may assume that vi,v2, ... — v weakly for some measure v on {0, 1}£. To be more
precise, we may assume that prvy, — prv weakly for all finite F C E, where pr((x,y)) = (x|F, ylf).
Writing p1(x,y) = x, this implies prpn = p1prvn — p1prVv weakly for all finite F C E. But prpn
is eventually equal to pru, so prp1v = prw; thus, p1v = p and likewise pov = p’. Thus, vis a
coupling of pand p’. Toprove v{(x,y) € PxP |x <y} =1, express theevent{(x,y) € PxP [ x <y}
as the limit of the decreasing sequence of events {(x,y) € P x P | x[g,, < ylg,}. (This compactness

argument was suggested in [Lig05, p. 75].) O

The set {0, 1} in theorem 31 may be replaced with an arbitrary closed subset of R, and the

theorem statement still holds after replacing “function” with “bounded function” in (i) and (ii)
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[GHMO1, Theorem 4.6]. More generally still, a version of Strassen’s theorem holds for Polish spaces
[Lin92, p. 129].

For more on couplings and stochastic domination, refer to [GHMO01, §4; Gri06, ch. 2; Lin92;
Hol12].
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3 The higher Potts and FK-Potts models and their coupling, in finite

volume with free boundary condition

Sections 3 to 5 will use the following parameters. Take integers 1 < v < d (cell dimension and
ambient dimension, respectively), real p € [0, 1], and integer q > 1 (which will never be assumed
to be prime, except where stated explicitly.) Take € [0, 0] such thatp =1 — e P (declaring
e~ ® =0.) The gauge group G will be the additive group Z/qZ.

The usual practice in lattice gauge theory is instead to view G as the multiplicative group of
complex gth roots of unity, but we will treat G as an additive group, which accords with the
conventions of homology theory. We'll also consider the cochain groups (whose elements are
characters) to be additive groups, denoting the trivial character by 0, again, to keep in line with the
conventions of homology theory over abelian groups. Our characters, however, are still maps into
the circle T C C. So (confusingly) the character 0 is the constant 1 map, and (more confusingly) the
sum of characters is their pointwise product (as already defined at the very start of section 2.1.) We
will occasionally also need to add characters pointwise when discussing Fourier decompositions
(of course, the group of cochains is not closed under pointwise sum.) The situation is far from
ideal, but that is the price we pay for attempting to bridge the two theories.

Let A be a finite nonempty set of (elementary) r-cubes in R4, and let X = Ugen Q € R4 (recall
from section 2.2 that X includes, along with each r-cube Q € A, all lower-dimension faces of Q.)
A prototypical example is the N-box, By = [N, N]¢ C R4 for some N > 1, with A = K, (Bn) (so
that X C By, and X € By if r < d.)

3.1 The higher Potts model

The lattice spin system presented here encompasses both the classical Potts model (for parameter
r = 1) and the Potts lattice gauge theory (for parameter r = 2) [AF84, §3], which assigns spins
to the nearest-neighbor edges. The latter two models generalize the Ising model and Ising lattice
gauge theory, respectively, which have q = 2. Spin systems for r > 3, that is, those which assign

elements of the gauge group to cells of dimension 2 or greater, are called higher lattice gauge theories.
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Let Xx'° be the additive group of (r — 1)-cochains,
Ix = C X 2/qZ) = (Cra(X, Z2/q2))" = ((Z/q2)* )"

We identify the cochains with the chains as explained in eq. (3).'® Under this identification, a
configuration o € Lx is an assignment of a “spin” from Z/qZ to each (r — 1)-cube in X. The

(r — 1)-cube Potts model on X with parameters 3 and q has probability measure

e—BH(0)
7B where H(o)= —) [og=1] for0<p<oo,

TX,,q(0) = r ] QeX:+(X) c€Xx, (5
[oez™ (X, Z/qZ)] for B = 0o

1Z7=1(X, Z/qZ)|

where the partition function Zp(f3, q) for 0 < 3 < oo is the normalizing constant

ZP(B)q) = Z eiﬁH(o-))

oEXX

[-] is the indicator function (page 3), and

0Q = <(T, aT]Q>, Q S fKr(X)

Recall that this angle-bracket notation means ¢(9:1q); here o is a cochain and 9,1 is a chain.
So oq is the sum of spins on the boundary of Q, taking orientation into account, considered
as element of C (that is, o = e2™k/a for some integer k.) Thus, the Hamiltonian H(o) is the
(negated) tally of the r-cubes with zero net boundary spin.

Note that to reconcile eq. (5) with the Ising model, where the summands in the Hamiltonian
are £1, the parameter 3 must be modified by a factor of 2 and the partition function must also be
multiplied by a constant accordingly.

In the existing literature on lattice gauge theory, it’s more usual to describe the Hamiltonian
H(o) in eq. (5) in terms of a unitary representation of the gauge group (see, for example, [Ca020,

p- 1440].) Equation (5) may be expressed in this form by taking the unitary representation p :

5In most cases our notation will explicitly specify X in order to avoid confusion once we begin discussing infinite-
volume limits in section 5.

160f course, it’s possible to simply define spin configurations to be chains. However, treating them as cochains results
in a more aesthetically pleasing theory. If the motivation seems opaque at this point, consider that will always be
taking the coboundaries of spin configurations and never their boundaries. See the beginning of section 3.4 for futher
motivation. Note that [HS16, p. 8] and [DS23, §5] also define spin configurations to be cochains.
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Z/qZ — GL(q, C) given in block matrix form as

k
0 Iq
p([k]) = L , [kl eZ/qZ

where I4_7 is the (q — 1) x (q — 1) identity matrix, so that p([1]) is a coordinate permutation of

order q. Then tr(p(g)) = q[g = [0]] and (now considering o as an element of Z/qZ)

Hio)=——= Y  Rtr(p(og)).

QeX,(X)

The indicator in (5) for f = co may be written as

[cez'(X,2/qz)] = [] log=1]
QeX+(X)

One way to understand this statement is to identify the cocycles with cycles via the standard dual
basis, so that o is (identified with) an assignment of spins (elements of Z/qZ) to the (r — 1)-cubes.
Then, speaking loosely, the coboundary operator 5"~ sends each (r — 1) cube to all its incident
r-cubes, and if an r-cube is present then its incident (r — 1)-cubes must make zero net contribution
to it.

This characterization of cocycles is useful enough to be stated as an explicit result for future

reference.

Proposition 32. For every cubical set Y C RY, integer k, and o € C¥~1(Y, Z/q7Z),

cez" (Y, 2/qz2) = ][] [oq=1] = 1.

QeX(Y)
k—1 k—1_
Proof. ceZ ' (Y,2/qZ) <= & '0=0
— (6k*1 o, c) = 1foreveryc € Cx(Y, Z/qZ)
— (8o, 1q) = 1forevery Q € Xy (Y)
< (0, 0x1q) = 1forevery Q € Ki(Y)
= [ loq=1]=1. O
QeX(Y)
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3.2 The higher FK-Potts model

We now extend the FK-Potts, or random-cluster, model to arbitrary-dimension cells. The random-
cluster model actually allows arbitrary real q € (0,00) [Gri06, §1.2], but we’ll be constrained to
integer q > 1. The case q = 1 is independent Bernoulli(p) percolation on the r-cubes.

Let Qx = {0, 1}*X). Elements of Qx will be called configurations. For a given configuration
w € Ox, we say an r-cube Q C Xis open if w(Q) = 1 and closed if w(Q) = 0. Each configuration w

gives rise to a cubical set consisting of all open r-cubes and all lower-dimension cubes,

Xo 1= Qu (Jo
)

To put it another way, X, is X with the relative interiors of all closed r-cubes removed,

Xo =X\ U Q

QEX,(X)
w(Q)=0
Note that X = X,,1, where w' is the configuration with all r-cubes open.

The r-cube FK—Potts model on X with parameters p and q has probability measure

Ox.p,q(W) = (1 —p)ct@pelw)|z=1 (X, Z/qZ)|, w € Qx, (6)

Zrkr(p, q)

where Zpkp(p, q) is the normalizing constant, the values o(w) and c(w) are the number of open
and closed r-cubes in w, respectively, and the last factor is the number of (r — 1)-cocycles in X,
with coefficients in the group Z/qZ.

For q = 1 all (co)chain, (co)cycle, (co)boundary, and (co)homology groups are trivial, so each
configuration w occurs with probability (1 —p)c(@)polw),

Proposition 33 below is meant primarily as a reference to help reconcile various formulas in the
existing literature, and secondarily to assist with proofs of some results that follow. In particular,

for r = 1, after identifying the set X, C R4 with a graph (example 19), eq. (8) reduces eq. (6) to

43



the usual random-cluster measure @x , q(w) = mﬂ —p)clwlpolw)gklw), Equation (9) was
presented as the “wrong” formula for r = 2 and q > 2 in [AF84, (3.7), (6.2)]. In general, when q
is not prime, the order of the rth homology group H.(Xw, Z/qZ) may fail to be a power of q, as
demonstrated by the counterexamples in [AF84, §4].

Constant factors such as q/*—1 (X may, of course, be suppressed by absorbing into the partition

function Zgkp(p, q), and likewise q_o(“’) may appear as qc(w) (because o(w) 4 c(w) is constant.)

Proposition 33 (Counting cocycles). The dependence factor in eq. (6) satisfies

|ZT—1 (Xw) Z/qZ)’ o |Cr71 (X) Z/qZ)|

- _ Xl g (X, Z/4Z)], weOx. (7
By 1 (X 2/qZ)] 1 |He (Xaw, Z/qZ)] <. @)

The number of 0-cocycles is
|2°(Xw, 2/q2)] = q1¥), @ e Ox, ®)

where k(w) is the number of connected components in the graph (V, E(w)) = (JCO (X), K1 (Xew )).
If q is prime then

|27 (Xa, Z/qZ)| = ¢ Imeterrbrlwl g e Qx, 9)

where Br(w) := Br(Xw, Z/qZ) (Betti numbers with coefficients were defined on page 29.)
If q is prime and r = 2 then

\qu(Xw, Z/qZ)\ — q\xo(XJlkarfSMw) (10)

where k is the number of connected components in X.

Proof. Let w € Qx. Since Ky (X)) = K (X) forallk <,

Cx(Xw, Z/qZ) = Ci(X, Z/qZ)  forallk <. (11)
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The first equality in eq. (7):

127 (Xw, Z/qZ)| = |ker 8" |

= |ker 07|
= [Ann(im 0, )| (by fact 8)
Cr1(Xw, Z/qZ
| 1|(ima |/c| I (o fact 4
_ |Cr—1 (Xw)Z/qZN
Br—1(Xw, Z/qZ)|
Cr_1(X, Z/qZ
s e 7 MIC TR 12
The second equality in eq. (7):
2" X, Z/qZ)| = 1€r1(Xuw, Z/4Z)] (as in derivation (12))

|im 0|
~IC (l(cr 12(;;)5(;] IZk)(l,r ol (by the first isomorphism theorem)
T wy T

q‘xr71(x)‘
qo(@) /|Z,(Xw, Z/q7Z)|
= ¢FXmel@) iy (X, Z/qZ)|  (because B, (Xw, Z/qZ) is trivial.)

As for eq. (8),

‘ZO(X“” Z/qZ)| = ||(B:2 gz:: ;?2;;: (continuing from eq. (12) withr =1)
:ézgz: ;;22: (because Co(Xw, Z/q7Z) = Zo(Xw, Z/q7Z))
- W ’ (by Lagrange’s theorem for finite groups)
= Ho(Xw, Z/qZ)|
= |(z/ qZ)k(X‘”‘ (by fact 25)
= g~ (because k(w) = k(Xw).)

If q is prime then Z/qZ is a field, so all boundary maps are linear maps between vector spaces

over Z/qZ. Hence the group H.(Xw, Z/qZ) is also a vector space over Z/qZ, with

‘Hr(Xun Z/qZ” = qBT(w)-
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This proves eq. (9).

If q is prime and r = 2 then the Euler characteristic formula (fact 24)

x(w) = Balw) = Br(w) +Bolw) = [Kz2(Xw)l = K71 (Xl + 1Ko (Xew)l
reduces by fact 25 to
P2(w) = Br(w) +k = ofw) — XK1 (X)| + Ko (X)],

where k := k(X) is the number of connected components in X (we're using the fact that k(X) =

k(Xw) whenever r > 1.) Rearranging,
131 (X —olw) + B2(w) = [Ko(X)—k+ B1(w),
which proves eq. (10). O

FKG and its applications

The FKG machinery, introduced in the 1970s [Gri06, Appendix], consists of a correlation inequality
together with a handful of related results that are important to statistical physics, percolation, and
related areas. The FKG property was originally developed in the context of the random-cluster
model, so it’s reasonable to hope that it’s shared by the higher FK-Potts model. Indeed, this turns
out to be the case. After the proof, we’ll explore a few consequences.

The notation and terminology will mostly follow [Gri06, §2.2].

For any finite set E define Qg := {0, 1}F (with apologies for overloading the notation: the set
Qx from before is Q¢ with E = X (X).) Endow Qg with pointwise ordering, w; < w; <<=
wi(e) < wy(e) for all e € E. We may take joins and meets (i.e., respectively, least upper bounds

and greatest lower bounds) of elements w1, w, € Qg,

(w1 V wz)(e) := max(wi(e),wz(e)),

(w1 A wsz)(e) := min(w1(e), wz(e)) fore e E.

A probability measure on a finite (or, more generally, discrete) measurable space is called

(strictly) positive if every nonempty set has strictly positive probability.
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Let p be a positive probability measure on the measurable space (Qg, P(Qg)). For E/ C E and

& € {0, 1}%', let p¢ be the probability measure on Qe\er =10, 1}E\E’ given by
me(w) == plw x & &), w € Qp\gy

Ele), eckt’
where (w x &)(e) = , and p(- | &) is shorthand for the conditional probability

w(e), egE’
u( . | {fwx&lwe QE\E/}). Since p is assumed to be positive, this conditioning event {w x & | w €
Qg\ g/} € Qf always has nonzero p-measure, and ¢ is also positive.

We say that p has the weak FKG property, or is positively associated, or has positive correlations, if
u(fg) > wu(f)u(g) for all increasing functions f,g: Qg — R. (13)

We say that p has the strong FKG property if it satisfies any of the equivalent conditions in the
following theorem [Gri06, Theorems 2.19, 2.24].

Theorem 34. For a positive probability measure w on Qg = {0, 1}F, where E is a finite set, the following

are equivalent.

(i) Strong positive association: For every E/ C E and every & € {0, 1}¥', the measure i is positively

associated (inequality (13)).

(ii) FKG lattice condition (also known as log-supermodularity): For all pairs w1, w, € Qg,
wwr Vwz) plwr Awz) > wlwr)uw(ws).

(iii) 2-Position FKG lattice condition: For all incomparable pairs w1, w, € Q¢ with Hamming distance

2 (that is, differing in precisely two positions e, e’ € E with wq(e)+wi(e’) = wa(e)+wz(e’) =1,)
wwi Vwz)u(wr Awz) > pwlwr)u(wsz).
(iv) Monotonicity: For every €/ C E and for all pairs &, ¢ € {0, 1}¥,

ESC = Hg st Me
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(v) 1-Monotonicity: For every e € E and for all pairs &, C € {0, 1)EMel,
ESC = Mg <st Mg

or, equivalently,

EgC — pg(eﬁ])gpc(ei—)”. ]

The phrase FKG Inequality (which we won't use) may refer either to inequality (13) or to the
implications (ii) = (13) [Gri06, Theorem 2.16] or (v) = (13) [Geol1, Theorem 4.11].

For the product Bernoulli(p) measure with p € (0,1), inequality (13) holds and is named
Harris’s Lemma after Ted Harris, who published a proof in 1960 [BRO6, pp. 39-42].

Inequality (13) may be contrasted with some analogous classical results for functions of a real
variable. Chebyshev’s Association Inequality states that nondecreasing functions f, g : R — R applied
to a real-valued random variable X are positively correlated: E[f(X)g(X)] > E[f(X)]E[g(X)] (for two
generalizations, see [BLM13, Theorems 2.14, 2.15].) A special case (by taking discrete uniform
X) is Chebyshev’s Sum Inequality: L3 aiby > (L3 a;) (1 ¥ b;) whenever a; < -+ < an and
by < < bp.

Now, the result—a partial extension of [Gri06, Theorem 3.8], which covers the case r = 1 for
arbitrary real q > 1. Recall that for us 1 < r < d, and q is a positive integer. The result for general
T and prime q was also given in [H516, Theorem 5.1].7 Notice that @x , q is positive for every

p € (0,1), so theorem 34 applies.

Theorem 35 (Strong FKG). For every p € (0,1), the higher FK—Potts measure (6) has the strong FKG
property.

Proof. We'll prove the FKG lattice condition

OX,p,q(W1 V W2) Ox p,qlw1 Aw2) = @Oxp,q(w1) Ox,p,q(w2), w1, w2 € Ox.

7Hiraoka and Shirai’s proof is very short and uses a higher-level tool from algebraic topology. The proof presented
here uses only elementary group theory. I do not know whether Hiraoka and Shirai’s proof extends to arbitrary
(non-prime) q.
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By proposition 33, this reduces to

po(w1\/wz)+o(w1/\w2)(1 _p)c(w1\/wz)+c(w1/\wz) po(w1)+o(wz)(] _p)c(w1)+c(wz)
‘Brf1(xw1\/wz)| ‘Brfﬂxw]sz)} |Br71(xw1)‘ ’Brfl(xwz)‘ ’

w1, W2 € Qx.

(14)

>

(For clarity, in this proof we’ll forgo indicating the coefficient group Z/qZ.)

The numerators in (14) are equal'® because

o(wy Vwz)+o(wy Awz) = o(wy) + o(w2),

clwy Vwz)+clwg Awz) = clwr) + clwa), w1, w2 € Qx.
Our symbol for the boundary operator is ambiguous: We write both

0 :Cr(X) = Cr1(X) and

Or : Cr(Xw) =2 Cr1Xw) (=Cr (X)) for every w € Qx.

In this proof, henceforth, the symbol 9, shall always refer to the former, “unconstrained” variant,
while for each w € Qx we'll identify C. (X ) with a subgroup of C.(X) (via the inclusion K, :
Cr(Xw) — Ci(X), which sends an r-chain in X, to the same r-chain in X, assigning coefficient
0 to every r-cube missing from X,.) Clearly, under this identification the unconstrained map 0-

satisfies B+_1 (X ) = 0+(C+(Xy)). Therefore,

’Br—1(Xw1\/w2)‘ ’Br—1(Xw1/\w2)‘ = ‘ar(cr(xwﬁ/wz)” ‘ar(cr(Xunsz))’
= [0r (Cr(Xawy) + Cr(Xaw,)) 35 (Cr(Xew, ) N Cr(Xaw,)) |
< [0:(Cr(Xwi)) [ [Or (Cr(Xaw,))|  (by fact 14)

= ‘Brf1 (Xw1)| ‘Brf1 (sz)‘) w1, w3 € Qx.

This is the required relation between the denominators of inequality (14). O

The FKG properties have numerous applications. Here are a few of them.

18We are implicitly proving this general result: A positive probability measure P has the strong FKG property if and
only if any (or every) probability measure of the form P,(w) = 5~ (1 — p)¢(®)p°(®) P(w) for p € (0, 1) has the strong

z
FKG property [Gri06, p. 33]. ’
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Comparison inequality The proof of the next result is taken essentially unchanged from [Gri06,

Theorem 3.21].%

Proposition 36 (Comparison inequality). For 0 <pj; <pz <1,

(pXﬂJl »q <St (stPZ»q'

Proof. Let f: Qx — R be an increasing function. We must show that @, f < @, f (for readability,

in this proof we’ll suppress the parameters X and q in the notation @x 4 and Zgxp(p2, q).)

0

Case 1: If p; = 0, then ¢, f = f(w®) where w® € Qx is the all-closed configuration. Since

f(w®) < f(w) for all w € Qx, it follows that @p, T < @p,T.

1

Case2: If p, = 1, then ¢p,f = f(w') where w! € Qx is the all-open configuration. Since

f(w) < f(w!) for all w € Qy, it follows that Qp,f < @p,f.

Case 3: If 0 < p1 < p2 <1, then

f = f(w)(1 —p2)@pst| 21 (X, Z/qZ
Pp. zmpz EZQ p2)< P32 (Xa, Z/q2)|
1 T—p2\ @) /py\ ot olw)

= — f(w) <> L (1 —p;p)clw)

Zrxp(p2) wéx 1—p; P1 P1 P1
N2 (X, Z/qZ)|

Zrxp(p1)

= SHPPL
ZFKP(pZ)(pm J

where

1—p1\ ) pp\ o
glw) = ( ) () > 0, w € Ox.
1—p2 P

The exponents o(-) and —c(-) are increasing, and p; < p2 by assumption, so the function
g is increasing. Setting f = 1 in the equality above, dividing, and applying the weak FKG
property (inequality (13)),

Zpxp(P1)
e Onf _ Zue P09 opife  epifiepg o -
Prat = - Zee(py) T epg T epg P
S on1g P P

YFor r = 1, the comparison inequalities also involve differing values q, < gy, but the proof’s extension to r > 1 fails.
There seems to be an analogous result assuming the stronger condition of divisibility q./q;, but we won’t pursue this
further.
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Thresholds for increasing events Recall the Bernoulli model: the family of product measures
up(w) = pel@)(1 —p)el@) p e [0,1], where w € Qg = {0, 1}F for some fixed finite set E. It’s well-
known that the function p — p,(A) is strictly increasing for every increasing event A # &, Qg.
Since p — Wp(A) is continuous, with p(A) = 0 and p1(A) = 1, there exists unique p € (0,1)
such that pp, (A) = 3. This p is called the threshold for A. Thresholds play a key role in the theory
of random graphs: E is the edge set, and A corresponds to the presence of some structure (for
instance, a Hamiltonian cycle.) To be more accurate, random graph theory studies the asymptotic
behavior of threshold sequences for increasing events A,, C {0, 1}En where [Eo| < [Eq] < ---
Thresholds in random graphs were introduced in the late 1950s [ER60] and remain an active area
of research. For instance, very recently a proof emerged for the Kahn-Kalai conjecture, a powerful
tool for estimating thresholds in the Bernoulli model [KKO06; PP22].

Just like the Bernoulli model, the higher FK-Potts model has unique thresholds:

The function p — @x,p,q(w) is continuous for every w € Qx = {0, 1)%+(X) 5o the function
P — @x,p,qf is continuous for every function f : Qx — R. In particular, if A C Qx is an increasing
event with A # @, Qx, then the function o : p = @x p q(A) is continuous, satisfies «(0) = 0 and
a(1) =1, and is weakly increasing by proposition 36. But « is a rational function (its denominator
p — Zkp(p, q) is a polynomial), so « must be strictly increasing on [0, 1].2° Thus, there exists
unique p € (0,1) with x(p) = %

More can be said. Theorem 35 allows us to put explicit bounds on the rate of growth of «, and
in certain cases to quantify the sharpness of the threshold. See proposition 66.

The strong FKG property has many other useful consequences that we won't discuss [Gri06,

Ch. 2]. Here is just one more result, quoted from [Gri06, §2.5, Theorem 2.53].

Proposition 37 (Exponential steepness). For every p € (0, 1) and every nonempty event A C Qx, the
higher Fk—Potts measure (eq. (6)) satisfies

H
(;dp log ox,p,q(A) = W if A is increasing and
H
di)log ©X,p,q(A) < —W if A is decreasing,

2The reasoning for this is as follows. Assume that f : [0,1] — R is a weakly increasing but not strictly increasing
function, so that f(x) = f(y) = ¢ for some 0 < x < y < 1 and some constant c. Then f(t) = ¢ for all t € [x,y]. If also
f= E for nonzero polynomials p and q then p(t) = cq(t) for all t € [x,y], so p(t) — cq(t) is the zero polynomial. It
follows that f(t) = c for all ¢ € [0, 1].
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where Ha is the Hamming distance function

Halw) = min [[Q € %:(X) | w(Q) #@'(Q))], w e Ox.

Proof. This is a special case of [Gri06, §2.5, Theorem 2.53], which applies to every probability
measure of the form P, (w) = Z%, (1—p)cl@lpol@) P(w) where Pis a probability measure with the

strong FKG property. O

3.3 The Edwards-Sokal coupling

Here, we generalize the standard probabilistic coupling [ES88; Gri06, §1.4] of the Potts and FK-Potts
(“random-cluster”) models.
The (finite-volume) Edwards—Sokal coupling of the (r — 1)-cube Potts model with the r-cube

FK-Potts model is the probability measure

1

(1 —p\c(w)yo(w) r—1
ZES(P>q)“ p) P o € 27 (Xw, 2/9Z)], (15)

HX,p,q(0, W) =

(O',(U) € ZX X QX = CT_1 (Xa Z/qZ) X {O) 1}:KT(X)>

where again o(w) and c(w) are the number of open and closed r-cubes in w, respectively, Zgs(p, q)
is the normalizing constant, and [-] is the indicator.

Recall that we've fixed p € [0, 1] and B € [0, oo] withp = 1 — e~ P (first paragraphs of section 3).

Proposition 38 (Marginals). The marginals of ux p,q are

Z Ux,p,q(0,w) = mx g q(0), ©€Ix and
wex

Z HX,]D,CI(O—’“’) = (PX)p,q(w)) (UGQX
oEX X
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Proof. If p € [0,1) then for every o € Lx

1 ..
Z HX,p,q (0, w) = Zes(pod) Z (1 —p)cl@lpolw) H [og =1] (by proposition 32)
wex ES p’ q wex er{r(xw)
1
= Zepa 2= | 1l 0-» [ ploq=11
T wenx | Qex(X) QeX,(X)
w(Q)=0 w(Q)=1
1 . .
= 7o d) H (1=p)+plog =1]) (via expansion)
ES\P> ] QeX, (X)
1
— — (1 —pHQeXK(X) loq#1}
Zspa) "
= 5— (1 )(e—rs)lﬂmxn—quxrmﬂoq:w
ES(P, q
1 _
—B(— X qexrx)[0Q=11)
< Ze(By0) )
= TtX)Bvq(G)'

If p = 1 then for every o € Zx (continuing the same derivation from the third line)

1
Z PLX,p,q(O—)w) = m H ((] _P) +p IIO—Q = 1]])

wex QE:K,—(X)
1
= 7o 1l lea=1I
ZES(p) q) QeEx, (X)
= ZES(Lq)[[G € Z ' (Xw, Z/qZ)] (by proposition 32)

X nX,B,q(G)-

For every p € [0, 1] and every w € Qx,

1

o,w) = —— (1 —p)ctwpelw ceZ "X, Z/qZ
é x,pia (0, @) = Z s (1 =) > I ( /42)]
o X ocZx
1
I & c(w),jo(w) Zr—] wa 7./d7,
Zespq) PP AR /qZ)|
1
x — (1 — c(w)o(w) Zr71 Xw, Z/qZ
Zoam P 127 /qZ)|
= (stp»q(w)'

Proposition 39 generalizes [Gri06, Theorem 1.10(c)].
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Proposition 39 (Partition functions). The partition functions satisfy

Zgs(p,q) = e BI¥Xizp(B, q), 0<

Zgs(p,q) = Zrkr(p, q), 0<

p<l;
p<l.
Proof. In the derivation of the first marginal within the proof of proposition 38, the constant of

proportionality must be 1 because on each side the sum over all o € Xx is 1. So

S N 31 SV S TR N,
ZES(p>q) ZP(Bvq)
This proves the first equality. The second equality follows likewise from the derivation of the

second marginal. O

Next, we generalize [Gri06, Theorem 1.13]. Proposition 40 states that to sample from the (r—1)-
cube Potts model, we may first sample w from the r-cube FK-Potts model, and then uniformly
select a cocycle o compatible with w; whereas to sample from the r-cube FK-Potts model, we may
first sample o from the (r — T)-cube Potts model, leave closed every r-cube Q for which o # 1,
and, for the remaining r-cubes, open each independently with probability p. Recall from section 1
that for r = 1 a uniform cocycle is an independent uniform choice of monochromatic spin for each

connected component.

Proposition 40 (Conditionals).
The first conditional of ux p,q s

[o € 27" Xw, Z/97)]
1271 (Xw, Z/qZ)|

undefined ifp=1and w # w',

if0<p<10rw:w1,

FLX,p,q(O- | w) = o€ Xx, we Nx,

1

where w! € Qx is the all-open configuration (w'(Q) = 1 for every Q € K(X).)

The second conditional of ux p,q s

ux,p,q(w | 0) = (1 —p)cl@)v@pele) TT 66 =1], o0€Zx, weQx,
QeX:(Xw)
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where v(0o) is the number of forbidden (v for “verboten”) r-cubes,

v(o) == [{Q e K (X)|og #1}], o€ Ix.

Proof. If p =1 and w # w', then (1 —p)¢(@) = 0s0 Ux,p,q(0,w) = 0 for every o € Lx, and we

can’t condition on w. Otherwise,

1X,p,q (0, W)

ZO’GZX HX,p,q(an)

_ (O =p)t@pel@o e ZT (X, Z/qZ)]

Y grery(1=p)e@pel@l[o’ € Z1(Xy, Z/qZ)]
[0 € 27" (Xw) Z/qZ)]

= T Xe, Z/qz)] 0 O €0 wEeOx

HX,p,q (0| w) =

For 0 € Zx let Qs C Qx be the set of configurations compatible with o,
Qs = {weQx|oeZ X, 7Z/qZ)} = {w € Ox | w(Q) = 0 whenever og # 1}.

The second conditional is

uxypsq(g’ w)
Zw’eﬂx HX,p,q(O-)w/)
_ (1 —p)el“pl@o € 27 (Xa, Z/qZ)]
Y wea,(1T—p)el@peleifo e 21Xy, Z/qZ)]
= 7 AR=a (by proposition 32)
S wreox 1 =PI @ oo x_log=1] > F°F
(1 _p)c(w)po(w) HQGSKT(X“,)[[GQ =1]
T e, 1P pele)
(1 _p)c(w)po(w) HQGKT(Xw)[[O-Q — ]]]
(1=p)() 3 (e, (T —p)elw)violpote’)

= (1 _p)c(w)*v(d)po(w) H [[O‘Q =1], o€ Xy, we Qx,

HX,p,q(@ | 0) =

QeX:r (Xw)
where the last step is by expansion
> (—petedvlopeted =TT ((1—p)+p) = 1. 0
w/GQg QGKT(X)
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3.4 Using the coupling

Recall that every spin configuration 0 € Ix := C™ (X, Z/qZ) is formally defined to be a
character, that is, a homomorphism from the chain group C,_1(X, Z/qZ) into C. For a chain

Y € Cr—1(X, Z/qZ) we'll write W, :=n(y), which is to say that W,, is the evaluation map
W, :Zx =» C, o o(y).

Every point in the image of W,, is a qth root of unity. We’ll discuss the expectation of W, with

respect to the higher Potts measure,

<W‘Y>X)B>q = T[X)Ban‘Y'

For r = 2 and d = 4 (lattice gauge theory), a Wilson loop is a closed directed walk in the edge
graph of X (for us a closed directed walk of length n > 0 is a sequence (vo,€0,V1,€1,...,Vn_1,
en—1,vn) Where v; are vertices, e; = {vi,Vviy1} are edges, and vo = vn; in particular, repetitions
of vertices and edges are permitted.) We associate with the walk a 1-cycle vy, in the sense that
v picks up a £1 coefficient on an edge each time that edge is traversed.? In this situation, W,
is called a Wilson loop variable. The T-cochain o is meant to represent a random connection on
the discretized “principal bundle” Z* x Z/qZ: To each edge, o assigns an element of the gauge
group Z/qZ, viewed as a multiplicative subgroup of C (see the note on page 40 regarding the
sum and product conventions.) The value W,, (o) is the product of these elements along v, that
is, the holonomy of the connection o along the Wilson loop. Its expectation (W )x g, q is called a
Wilson loop expectation. See [Chal9] for more details on Wilson loop variables in gauge theories.
Theorem 41 states, in particular, that the Wilson loop expectation is equal to the probability that y
is the homological boundary of some surface in the FK-Potts model.

Forr = 1and q > 2—the Ising and Potts models—the theorem implies that for any two vertices
x and y the expected quotient of their spins (as complex qth roots of unity) coincides with the
probability that x and y are connected by some path in the FK-Potts model. For these special
cases, a number of equivalent formulations can be found in the literature. For instance, [Dum?20,

Corollary 1.2.1] instead takes another inner product of the vertex spins and a different function

2For definiteness, we may take +1 on the first edge of the walk, and subsequently pick signs so that for every two
consecutive edges the boundaries cancel out on the connecting vertex. That is, arrange signs so that the resulting chain
v is a cycle.
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relating p to 3. And [Gri06, Theorem 1.16] states that the two-point correlation function of the Potts

measure is directly proportional to the two-point connectivity function of the FK-Potts measure,
7x,p,q (0(x)=0(y)) — % = (1- %) ©X,p,q(x and y are connected in X,), x,y € Ko(X).

Theorem 41 for the special case of prime q appears in [DS23, Theorem 5]. See also the discussion
in [DS23, §1.2, “Why does q need to be prime?”]. Theorem 41 generalizes the result to arbitrary
integer q > 1.

We're still in the finite-volume setting with free boundary condition. A matching result for

more general boundary conditions will be given in theorem 64.

Theorem 41 (Expectation equals probability). For every (v — 1)-chainy € C+_1(X, Z/qZ),

<WV>X>B,OI = ®X,p,q (Y € Br—1 (Xw, Z/qZ))

1

Proof. Assume that either p € [0,1) and w € Qx, orp = 1T and w = w' € Qx (the all-open,

or constant 1, configuration.) In either case, the conditional expectation px , (0 | w) is defined

(proposition 40). Let w (w) € C be the conditional expectation

wy (W) = px,p,q(Wy lw) = Z Wy (0)ux,p,q(0 | w)
oEeXx

[o€ 2" Xw, Z/q7Z)]
= 2 o 27T (X, Z/qZ)]

oeXx
1
- | ker 57— 1| cekezrérgl(w
1
— —‘ Ann(imd.) ‘ GEAgm a(j)h/) (by fact 8)
= [y €im9,] (by fact 12)

= [y € Br—1(Xw, Z/qZ)].

By the law of total expectation, (W )x,p,q = ®x,p,qWy (noting thatif p = 1 then @x p q(w') =1,

so this argument is valid for every p € [0, 1].) O

It follows that Wilson loop expectation (in finite volume, with free boundary condition) is real,

nonnegative, and increasing in 3. We will eventually use this consequence to prove the analogous
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infinite-volume statement, corollary 72. See also corollary 65 for more general boundary conditions.

Corollary 42. If 0 < 31 < 32 < oo, then

0 < <W‘Y>X)B1)q < <W‘Y>X)B2)q < 1

for every (v — 1)-chain vy.

Proof. Immediate from theorem 41 and the comparison inequality, proposition 36: The event
{weQx|yeBri1(Xew,Z/qZ)}

is increasing because if w < w’, and if y is the boundary of an r-chain I' in X, then vy is also the

boundary of the r-chain

rQl), Qe w,
0, Qew' \w

r":Qw

in Xy O

Notice that the variables W,, fory € C,_1(X, Z/qZ) are precisely the characters of Xx (because
of the natural isomorphismmn : C,_1(X, Z/qZ) — )f; —see section 2.1.) So by the Fourier transform
every complex-valued function of Xx is a linear combination of variables W,,. This means that

theorem 41 has more general uses (for instance, the proof of proposition 71.)
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4 Boundary conditions and the spatial Markov property

To lay the groundwork for infinite-volume measures (section 5), the definitions and results in
section 3 must be generalized from free boundary condition to arbitrary boundary conditions. But
first, some general comments on factorization are called for.

The exponential-of-Hamiltonian formula of the finite-volume higher Potts model (eq. (5)) can
be justified by the Hammersley—Clifford theorem??. Roughly speaking, this theorem states that a
positive probability measure is a product of factors determined by its underlying graph’s cliques
if and only if the measure satisfies one of several equivalent spatial Markov properties. In more
concise language, the Gibbs random fields (or Gibbs ensembles) are precisely the Markov random
fields. In our case, the underlying graph has the (r — 1)-cubes in X as its vertices, and two vertices
are adjacent if they’re both contained in the same r-cube in X. So a (maximal) clique is the set of
all (r — 1)-cubes bordering a single r-cube. Equation (5) for 3 < oo is easily seen to be a product
of nonzero factors each of which is a function of the spins within a single clique. Consequently, a
spatial Markov property holds (proposition 52.) For details on the Hammersley—Clifford theorem,
see [Lau96, Chapter 3; Gril8, §7.2; Geoll, Theorem 2.30 and the bibliographical remarks on p.
454].

The higher FK-Potts model, on the other hand, has no Gibbs factorization (by cliques) and is
therefore not a true Markov random field. However, a so-called “domain Markov property” is
often described (for the bond percolation case, v = 1), which involves modifying the measure by
identifying particular boundary vertices [Dum20, §1.2]. We generalize this property in proposi-
tion 53 and proposition 60. Loosely speaking, conditioning gives a boundary condition specified

by a family of cycles supported on the boundary (r — T)-cubes.

4.1 Spin conditions

Take r,d,p, q,B, G, X, Zx, Qx as described in section 3. For readability, in this section we'll of-
ten omit the coefficient group G = Z/qZ, writing C—1(X) := C" (X, Z/qZ) and Z""(X) :=
Z"1(X, Z/qZ) and so on. Recall our configuration spaces, Qx = {0, X and 2x = C1(X).

2 Another justification is the variational principle, according to which these measures minimize the free energy
[Geoll, pp. 308-309; Rue04, p. 4].
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Definition 43. The boundary of X is the union of all boundary (r — 1)-cubes,

X = JQ,

Qes

where

S = {Q € Xr—1(X) | Q C RforsomeR € fKr\iKr(X)}

= {Q e X,_1|Q CRforsomeR € K, \ X.(X) and Q C R’ for some R’ € K(X)}.
(Equality holds because X is a union of r-cubes.) Let Zsx = Cr1(0X) = ((Z/ qZ)S)A. Denote by
Px,0X : Zx — Zax the coordinate projection (see definition 9 and fact 10.) A

We'll extend all three families of measures 7x g, q, ©X,p,q, and ux p,q, by specifying the

permissible spin configurations.
Definition 44 (Spin conditions).
* A spin condition (or SC) is a nonempty subset of Zx.

* A subgroup spin condition is a subgroup of Lx.

A boundary spin condition (or BSC) is the preimage of a nonempty subset of L3x under px ax.

A point boundary spin condition is the preimage of a singleton {x} C Z3x under px sx. Soapoint
BSC completely specifies the spins on 0X, and leaves the remaining spins in X unspecified.

-

A cyclic boundary spin condition is a set of the form pfaX(AnnCM(ax) =) for some = C

Z:_1(0X) (recall from page 10 that Ann¢,_ | (5x) sends subsets of C;_1(0X) to subgroups of
CT1(0X) = Zpx.) By fact 7 and fact 10,

Pxox(Annc _ (ax)Z) = Annc__, (x) kx,0x(Z)

where kx ax : Cr—1(0X) = Cy_1(X) is the coordinate injection. So a cyclic BSC is the set
of all spin configurations that kill a given family of reduced (r — T)-cycles supported on
8§ = K;—1(0X). The use of reduced homology makes a difference only for r = 1; recall that in

the non-reduced homology every 0-chain is a cycle, which is not what we want here.

 Imprint boundary spin conditions will be defined in definition 58. Roughly speaking, they are

those that can be obtained by conditioning on external r-cubes: Let X' and X be cubical
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(XN (XT).

sets with X! C X and pick a configuration w, € {0, 1}*r It will be shown in

proposition 56 that the conditional FK-Potts measure @x , (- | w2) is an FK-Potts measure

on X! with BSC, and a BSC of this form will be called an imprint BSC for X'. A
point BSC
AN
BSC
= ~
imprint BSC = cyclic BSC SC
SN =
subgroup SC

Figure 3: Kinds of spin condition. All inclusions are strict.

The relationships between the various spin conditions are displayed in fig. 3. The only non-
obvious relationship is the leftmost, which is demonstrated in proposition 59. The purpose of this
rather elaborate classification scheme is to provide terminology that clarifies various statements in
this section and the next. We illustrate with some simple examples.

The free boundary condition is & = Lx (it's free in the sense that all spin configurations are
permitted.) For the free boundary condition the measures given below (egs. (16), (17) and (18))
coincide with those given earlier (egs. (5), (6) and (15), respectively.) The free boundary condition
is a cyclic BSC (take = = @ in the definition of cyclic BSC), and in fact an imprint BSC (by
proposition 54), but not a point BSC (because [Zx| > 1.)

In the Potts model (r = 1), the wired boundary condition is the set of all configurations that assign
the same spin to every vertex in 9X. This is clearly a subgroup SC and a BSC. Moreover, it is a
cyclic BSC: take = = {1g — Tp € Co(9X) | Q,P € Ko(0X)} (each element 1o — 1p € Z forces the
spins on Q and P to be equal.) Actually, taking = = Zo(9X) gives the same spin condition.?*

Therefore, we define the wired boundary condition? in the higher Potts model (any ) to be the
cyclic BSC with = = Z, 1(3X). Thus, in the gauge setting (r = 2), the wired boundary condition is
the collection of all configurations where the product of spins around each (generalized) boundary
loop is 0.

The periodic boundary condition in the case of abox, X = |J K ([—N, N]4) for N > 1, is the set of all

BFor r = 1, if Xis a box and d > 2 then the wired boundary condition is an imprint BSC, but this does not hold for
general X. Suppose, for instance, that X is an annulus: start with a box in d = 2 and remove a single internal vertex and
its 4 incident edges. Then there is no way to connect the internal boundary of the annulus to the external boundary (the
complement of the annulus in the plane is not path-connected.) It may be possible to modify our definition of imprint
BSCs to be more general so as to avoid such complications.

2[Cha20, p. 17] calls this the zero boundary condition.
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configurations that assign equal spins to each pair of opposing (r — 1)-cubes in 0X. This is not quite
the same as working in a d-torus, because each boundary r-cube is duplicated, or quadruplicated
(if it's a subset of a face of [N, N]¢ of codimension 2), etc. To get the d-torus, modify X by removing
the relative interior? of all but one r-cube from each such replicated collection, and then assign
periodic boundary condition. In either case (X or modified X) the periodic boundary condition
is a cyclic BSC: take = = {1g — Tp € C,_1(0X) | Q,P € X,;_1(0X) belong to opposing facets of
[N, N]4 and are translates of each other along one coordinate}. It may or may not be an imprint
BSC:If r = 1 and d = 2 then it is not, but if r = 1 and d = 3 then it is (there is room to “wire up”
each opposing pair of vertices by connecting them with an edge path outside X in R3, but not in
R?, because some of the wires would have to intersect.)

Note that the more common definition of periodic boundary condition is for the modified, toroidal
version of X (as in [FV17, p. 81].) Unfortunately, this toroidal version doesn’t quite fit for us, in
the sense that it’s not a spin condition on X according to our definitions, so we won't investigate it
further. However, it bears noting that the toroidal version is quite natural and enjoys many special
properties such as invariance under translations, rotations, and reflections. A comprehensive

study of such toroidal measures may be found in [Geol1, Part IV].
Proposition 45. The intersection of two cyclic BSCs is a cyclic BSC.
Proof. Let £l = p;JaX(Ann =) and &% = p;]ax (Ann=?) where =',Z2 C Zr_1 (0X). We may

assume without loss of generality that =! and =2 are subgroups of Z, 1(0X). The intersection is

§ngt = p;jaX(Ann = n p;(,]ax (AnnZ=2)
= p;jax (AnnE1 N AnnEz)
= pxlox (Amn(Z' +22)) by fact6. .
For every spin condition & (that is, every nonempty & C Yx) we define probability measures

e PH0)[o € £]

where H(o) = —Z [og =1] if0 <P < oo,

Z5 (B, q) Qexy (X)
b, (o) = loeZ (X, Z/qz)nE] . 1 (16)
X,B,q ZT(X, Z/qZ) N &) if=ocoand 2" ' (X, Z/qZ) N E # @,

undefined if p=coand Z" (X, Z/qZ) N & = @,

%S0 as to not remove any (r — 1)-cubes.
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(1 —p)el@pol@)|z=1(Xy,, Z/qZ) N &

Zip(Ps q)

PXpq(@) 1= ifp<lorzr (X, z/qZ) N+, (17
undefined ifp=1land Z"'(X, Z/qZ) N & = @,
zgs(]p,q)“ —p)cl@pel®ls e 771 (X, Z/qZ) N ]

ui)p’q(c,w) = ifp<lorZ™'(X,Z/qZ)NE +# @, (18)
undefined ifp=1and Z"~'(X, Z/qZ) N § = @,

oc€rx, weQx.

These definitions are motivated by proposition 46 and proposition 47. To understand the “unde-
fined” lines, recall that X = X1 where w' is the all-open configuration. The condition Z™"(X,
Z./qZ)N§ # @ ensures that at least one permissible spin is compatible with w!, which is necessary
because ux,p)q(uﬂ) = 1 when p = 1 (eq. (15)). Here Z%(B, q), ZéKP(p, q), and Zés(p, q) are nor-
malizing constants, with ZI‘E(B, q) defined only for 0 < 3 < oo just like the free-boundary version
Zp(B, q) earlier.

To keep the the notation reasonably clean, we’ll often write ”5(,(3, q’ etc., even when & C Xy
for some other cubical set U C X or X C U. This is to be understood in the following sense: If
X C U then take spin condition {py x(x) | x € &} € Xx, and if U C X then take spin condition
Uxea p;ju{x} C Zx. (Here pu,x : Zu — Zx and px,u : £x — Ly are the coordinate projections.)
These conventions are easy to remember by keeping in mind that the role of & is to constrain the
spins in X.

Our definitions of spin conditions, and the associated measures (16) to (18), are not standard.
The usual approach is to specify spins on additional vertices (or (r — 1)-cubes) outside X, and to
augment the Hamiltonian with boundary terms that describe interactions between and X and these
external spins (see, for example, [FV17, p. 81].) The reason we instead define boundary conditions
as subsets of spin configurations on X is that it makes definitions (16) to (18) and various theorem
statements in this section very clean. We do, however, pay a price: the definitions of Gibbs states

in section 5 become somewhat more complicated.
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Proposition 46. For every spin condition &,

”i,(g,q(c) = mix,p,ql0lo€ &) and

MR p.q(0 @) = Hxpqlo,w |0 €E),
unlessp = 1and 27V (X, Z/qZ) N & = @ (in which case all four quantities are undefined.)
Proof. Immediate from the definitions of these four measures (egs. (5), (15), (16) and (18).) O

Proposition 47 (Marginals). For every spin condition &, the marginals of ui p.q e

CUEQX
D HRpa(®@) = 0%, ¢(w), weOx,
oEXX

unless p = 1and 271 (X, Z/qZ) N & = @ (in which case all these terms are undefined.)

Proof. Follow the proof for free boundary condition (proposition 38), carrying along a factor of

[oe&]. O

Alternate proof for first marginal. Start with proposition 38, condition on o € &, and apply proposi-
tion 46. O

Proposition 48 (Partition functions). For every spin condition &, the partition functions satisfy

Z5(p,q) = e P XIZEB q) = Z5p(p,q)  ifO<p<1
and
Z5(pyq) = Zioplpya)  ifp=Tand 27 (X, Z/qZ) NE # 2.

(Recall that if p = 1 then ZIE;([S, q) is undefined, and if p = 1 and 27X, Z/qZ) N & = @ then Zé’s(p, q)

and ZI’EKP(p, q) are also undefined.)
Proof. Argue as in the proof of proposition 39. O

When a spin condition & is involved, the conditional measures work essentially the same way as
before (see proposition 40 and the paragraph that precedes it), except now when picking a uniform

cocycle o compatible with w we must pick among only those that belong to &.
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Proposition 49 (Conditionals). Let & be a spin condition.

The first conditional of pi,p) qis

[o0€ 2 (X, Z/qZ) N E]
1271 (X, Z/qZ) N &

fo<p<lorw=uw')

: and 2"V (Xw, Z/qZ) N E # 2,
MX,p,q(0 | @) =

undefined ifp=1and w # w',

undefined ifZT_‘ Xw, Z/qZ)NE =2,

o€Xx, we Ox.

1

where w' € Qx is the all-open configuration (w' (Q) = 1 for every Q € K+ (X).)

The second conditional of pi)p) qls

(1 —p)ctw)—violpolw) H [og =1] ifoek,
M pq(w o) = QEX, (Xa) oE Ty, we Oy,

undefined ifo¢é,

where

v(o) = }{QefKr(X)IGQ#H‘, o€ Xx.

Proof. For pi)p’q(O' | w): If 27" (X, Z/qZ) N & = @, then uiyp)q(cr,w) = 0 for every o € Xx.
Otherwise, follow the proof for free boundary condition (proposition 40).
For pi)p’q(w | 0): If 0 & & then pf()p’q(cr, w) = 0 for every w € Qx. Otherwise, follow the

proof for free boundary condition. O

4.2 Spatial Markov properties

We’ll examine several spatial Markov properties, starting with the higher Edwards-Sokal coupling
itself (proposition 51.) Taking marginals will reveal the corresponding properties of the higher
Potts and higher FK-Potts models (propositions 52 and 53.)

For the next few pages, we’ll use the following notation.

Notation 50. Assume that X is the union of at least 2 r-cubes. Partition the family of r-cubes
in X into n > 2 disjoint nonempty subfamilies, K.(X) = (J;<icn Ai. Write X' = Ugea, Q for

1 < i< n,sothat X = [J; X! (but this union is not necessarily disjoint, because distinct r-cubes
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may have nonempty intersection.) The interface of the partition is
€:={BeX,_1(X)| BC X' nX for some distinct i, j} .

That is, the interface consists of all (r — 1)-cubes that are faces of r-cubes from at least two A;i’s.

The collection of (r — 1)-cubes internal to A; is
Bi = {BeXK,1(X)|BCX}I\€ = Keq(XH)\E forT<ig<n,

Thus, the partition (A;) of K+ (X) induces a partition K,_1(X) = € U [, <i<n Bi (but some of the
sets &, B{ may be empty.) Let

L= ((Z/qZ)?")" and Qi:={0,1}""  for1<i<n,

e = ((Z/q2)%)".

Identify Yx with Z¢ x [[; Zi and Xy with X¢ x Zj, and also Qx with [[; Qi. The coordinate

projection maps will be denoted

Pa,i : Ox — Oy,
Px,xi * Xx — in (: Ye X Zi),

Ppe : Lx — ZXg. A

Here’s an example for r = 1: Let X be the union of all edges in the box [N, N] d C RY; let A,
be the family of all edges in a smaller box [-M, M]4, including the boundary edges?; and let A,
be the family of all edges that are in X but not in A;. Then €& is the collection of vertices lying on
the boundary of the smaller box, and B and B, are the collection of vertices in the interior and

exterior of the smaller box, respectively.
Proposition 51 (Spatial Markov property of Edwards-Sokal coupling).

If& = pg]{cf(’g} C Zx for some o € L¢, then

1 palow) = [T wé  (oxxi(0), po,i(w)).
1<ign

%Those edges that are subsets of bd[—M, M]¢, where bd is the boundary operator for the usual metric on R<.
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In particular, with respect to ux p, q, the n o-algebras generated by the factors Li x Qy are mutually

independent conditional on the o-algebra generated by the factor L¢.

Proof. Identify each (o, w) € Lx x Qx with (o1, w1,...,0n,wn,0¢) € (H1<i<n XX Qi> X Ze.

By proposition 32, for every (o, w) € Zx x Qx,

1
ZES(X> P, q)

1
— 1 — p)c(wilyolwsi) o =1
Zesopqy | LI (= [] loa=1]

1<i<n QeX, (Xw)

x,pq(0y W) = (1—p)l@pel@o e 27" (X, Z/qZ)]

_1) T |0-peeipe@ T [oo=11

wi(Q)=1

Each factor [og = 1] is a function of o; and o¢ because all (r — 1)-cubes bordering Q € A; belong

to either B; or €. In fact, we may write this as

" (0, w) = [Tr<icn Zes(X, p,
XY ) -
praie ZES(X>p>q)

q)
| | Hxi,p,q(ﬁi X Og, wi)) (O',(i)) € Ix x Qx.
1<i<n

Now fix 0% € Z¢ and let & = {o%} x [[; Zi x Q4 C Zx (that is, the spin condition & specifies the

spins on the interface € but doesn’t restrict spins on the remaining (r—1)-cubes.) By proposition 46,

Hi,p,q((f»w) = [[0-8 = O-é]] HX,p,q(o-]w--)Gnaw | o¢)
x [og = 0g] ux,p,q(0, W)

x [og = o¢] H Hxip,q(0i X Og, wi)
1<i<n

_ &
= 11 Hxip,q(0i X Og, Wi).
1<i<n

Each factor in this product serves as a probability measure on X; x Q;, so the net factor of

proportionality is 1; that is,

FL)a(,p,q(o_’w) = H Hii,p)q(gi X O¢g, wi)' O]
1<ign

A comment on proposition 51: The Edwards—Sokal coupling (eq. (15)) is a Gibbs random field
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in the sense that its probability mass function is a product of locally-determined factors. So it must
be a Markov random field (this is the easy direction of the Hammersley—Clifford theorem; see
[Lau96, Proposition 3.8].) To wit, construct an undirected graph with vertex set K. (X) U X;_1(X),
where for each r-cube Q there’s an edge from Q to each of its boundary (r — 1)-cubes, and edge
between every pair of Q’s boundary (r — 1)-cubes. With respect to this graph, the measure px ;4
has the global Markov property in the sense of [Lau96, §3.2]: If A,B,S are disjoint vertex sets
such that every path from A to B passes through S, then A and B are independent conditional
on S. Proposition 51 does not capture the full strength of this statement, as it conditions only on
(r—1)-cubes. It seems futile to seek an analogous theorem for conditioning on a family of r-cubes
because such a family cannot separate the graph. This also explains why the higher Potts model
enjoys the spatial Markov property whereas the higher FK-Potts model does not, as we’ll see in

propositions 52 and 53.

Proposition 52 (Spatial Markov property of higher Potts model). With respect to 7tx g, q, the n o-
algebras generated by the factors ;i are mutually independent conditional on the o-algebra generated by the

factor X¢.
Proof. Follows directly from proposition 51 and proposition 47. O

The phrase hidden Markov below is meant to suggest at independence conditional on the spins,
which aren’t explicitly present in the higher FK-Potts model but instead emerge as a new spin

condition ¢ on the interfacial (r — 1)-cubes.

Proposition 53 (Spatial hidden Markov property of higher FK-Potts model). Forn = 2 in notation 50,

OX,p,qlWwr,w2) = Z X, pq(Pg ' E) @il)p,q(wﬂ (Piz (w2), (wi,w2) € Qq xQy,

E={og}CZ¢

»Prd

where the sum is over all singletons containing an element of L.

Proof. Omitting everywhere the subscript “p, q” for clarity,

ex(wr,wy) = Y pxl(o,wr,wy)
oEXx

= Z Z nix(pg &) px (o, wi,w; | o € pg ' &) (by proposition 38)
oeXx E={0g}CZ¢

= Y mxlpg'8) D> uglo,wi,wy) (by proposition 46)

E={og}CZ¢ oeXx
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= > mx(pg'8) Y uhi(on,08, wi)ub,(02,0f, ws) (by proposition 51)

E={oe}Cx¢ oLEZg
O01€EX,
02€X)

= Z Ttx(pg]a) Z Hf'(](G],O‘g,w])},Lf‘(z(o‘z,o'g,wz) (all other terms vanish)

E={og}CZ¢ o1€L,
0'2622

= ) e8| D uplonop,wi) || D ugloz, 08, w))

E={oe}Cxe 0LEZ, oLEZ:

01€X, 02€EXH
= Z fo(P?ﬁ)(Pf(](wﬂ(Piz(wz) (by proposition 47),
E={oe}Cxe

w1 € Q1, wz € Q. ]

Notice that for & = &, which is to say when X' and X? don’t share any (r — 1)-cubes, proposi-

tion 53 reduces to independence (because ¢ is the trivial group, so the sum has only one term):
PX,p,q (w1, wz) = Px1.p,q (w1) Px2.p,q (w2), (w1,w2) € Q1 x Qy.

4.3 Conditioning in the higher FK-Potts model

Conditioning in the random-cluster model (r = 1) is described in [Gri06, Lemma 4.13]. Our aim
is to generalize this result. In the prototypical case, X is a box containing a smaller box X', and
we condition on the (open or closed status of the) r-cubes outside X', that is, the elements of
K (X)\ K (XT). Proposition 54 describes what happens when all external r-cubes are closed. It
is a special case of proposition 56 and proposition 60, but a standalone proof is included to aid

comprehension.
Proposition 54. For n = 2 in notation 50, and p € [0, 1),
Ox,p,q(w1 w2 =0) = @ox1 5, q(w1), (wr,w2) € Q7 x Q5.

Proof. For every wj € Qj,

Ox,p,q(lwr | wz =0) o< @x,p,q(wi,0)
x (] _p)c(un)+\A2|po(w1)+0‘zr—1(X(who))‘

x (1 _p)c(wl )po(wl)}ZT—1 (X(w1,0))|
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= (1—p)t@rlpete) 3 [(o1,02,0¢) € 27 (X(w;,0))]

(0e,01,02)
€ XeXX1XX)y

— _p)clwi)yo(wr)
(1—p) p

> llor,08) € Z7 (X, ) [(02,0¢) € 271 (X5)]

(0e,01,02)
E XXX XXy
= (1—p)el@npol@) 3 [(oy,0¢) € 2 (X},))]
(0e,01,02)
EZgXZ]XZz
= (1-p)° “’”P DNz (X, )| 122

o (]_p) (w1) (w1) }ZT 1 )}
X @x1,p,qlw1).
In the sixth line, we used the fact that every configuration (02, 0¢) € (£ x Zg) = Zyx2 is a cocycle
in the cubical set XZ,, = X3 which has no r-cubes. O
Here is a simple consequence that we’ll use in the proof of proposition 71.

Corollary 55. For n = 2 in notation 50, take two increasing events E1 C Q7 and E C Q7 x Q that

satisfy

w; €k = (w;,0) €L

Then their probabilities satisfy

Ox1,p,q(E1) < ©x,p,q(E).

Proof. Assume p € (0, 1) (the cases p = 0, 1 are trivial.) By conditioning,

(PX,p,q(E) = Z @X,p,q(wé) (pX,p,q(E | wé)
wéeﬂz

WV

Z Ox,p,q(W3) ©x,p.q(E| w2 =0) (by monotonicity: theorem 35)
"UEGQZ

= ©x,p,q(Elw2=0)
= @x,p,q((w1,0) € E| w2 =0)
> @x,p,qlwr € E1 w2 =0) (by assumption on E and E7)

= ©x1,p,q(E1) (by proposition 54.) O
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Now, a more general result. Again, the easiest scenario is a box X = X, ([—N, N] d) containing

a strictly smaller box X' =K. ([-M, M]9).

Proposition 56 (Conditioning in the higher FK-Potts model with free boundary condition). For
n = 2 in notation 50, and p € (0, 1),

OX,p,qlwr |w2) = @i])p)q(wl)» (wr,wz) € Q1 x Q)
where &' C L is a spin condition for X' given by

£ = {(01,0¢) € L1 x Z¢ | (02,0¢) € 27 (X3,,) for some 02 € 3}

= pPx,x! (p;,]x2 [z (Xiz)])

Proof. Observe thatforevery o = (0¢,07,02) € ZexX1xZI; =Zxandw = (w,wz) € Q1 x0Q) =

QX/

(01,02,0¢) € "' (Xw) <= || [oq=11  (by proposition 32)

QG:Kr(Xw)
— [T Too=1] [T [oq=1]
QeX (X)) QEXK+(XZ,)

= H [(o1,0¢)0 =1] H [(o2,0¢)g =1]

QEX+ (XY, ) QEX+(XE,,)

= (01,0¢) € 27 (XY,,) and (o2,0¢) € Z7(XE,,)
or, equivalently,
[(o1,02,0¢) € Z™ 1 (Xo)] = [(o1,0¢8) € Z" (X, )] [(02,0¢8) € Z7 1 (XE,,)]-
Take w, € Q. Conditioning on w; gives

©X,p,qlw1 | w2) o< @xp,qlwr,w2)
x (1 —p)c(w‘Hc(wZ)p"(“"HO(“)Z)‘qu (Xw)| where w = (w1, ws) € Qx

o (1—p)cleripelen)|zr=l(x,,)]
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_ (1 _p)c(w])po(“ﬂ) Z [[(0—],02)0-8) S Zr_](Xw)]]

oc€EXe
01 EZ]
02€EX)

— (1—p)cl@polwn) Z [(o1,0¢8) € Z7 " (X, ) [(02,0¢) € Z7 1 (XZ,,)]
OgEXe

01€X,
02€XH

= (1 _p)C(wl)pO(wl)

> | llor,00) €77 XD Y Mloz,0e) € 271X, ], wi €.

(Tgez(g 0‘2622
o1€X,

To simplify this expression, we argue that the inner sum always evaluates to either 0 or a positive
constant s that is independent of o¢ and o7. To see why this is so, let p : ARl (Xﬁ, ,) — Lg be
the coordinate projection (to be more precise, p is the restriction to A (Xﬁ,z) C X, x ¢ of the
projection £, x £¢ — L¢.) The inner sum evaluates to | p~! {o¢}|- But pis a group homomorphism,
and by the first isomorphism theorem all nonempty preimages of singletons have equal number
of elements. Let s be this common number of elements (s is a function of w but not of o¢.) Thus,

for every o¢ € Zg,

> loz,08) € Z771(XE,,)] = s[(02,0¢) € Z7 1 (XZ,,) for some 0, € L,].
0'2622

(The two sides are either both equal to s or both equal to 0, depending on o¢.) Pulling out the

common factor s gives

Ox,p,q(W1 | w2) oc (1 —p)el@npolwn)

- Y lor,0e) € Z7 (XY, ] [(02, 0¢) € Z7 T (XZ,,) for some 07 € L]

0'56):5
o1€X,
— (1 _p)c(un).po(wl) Z [(o1,0¢) € erl(xlm) N a/]]
Og€EXe
o1€X,
— (] _p)c(wﬂpo(u.n)}zrf] (X2U1) N 6/‘
X (pf‘(q,p’q(a”)) w1 € Q])
where &' is as described in the theorem statement above. O

Here’s a simple illustration of proposition 56. It also serves as a prototypical example for
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proposition 59.

Example 57. Take d > 3 and r = 2. Let X be the union of the 6 faces (plaquettes) of some 3-cube.
Let A; contain a single one of these plaquettes, and A, the remaining 5 plaquettes. Then X is
trivial (there are no edges internal to the single plaquette in A7) and Z¢ is the configuration space
of the spins on the 4 edges of the plaquette in A. Let w; be the all-open configuration on Q; (that
is, condition on each of the 5 plaquettes in A being open.)

If (02,0¢) € Z7 (X2, ,) then o¢ € Z71(X1) (because the plaquettes form a closed surface, so
that if the spins around the boundaries of 5 of them have sum 0 then the same is true of the 6th
plaquette.) Conversely, it’s not hard to see that for every oz € Z"™~'(X') there exists 0, € £, such
that (02,0¢) € Z1(X2,,). So &’ is the set of all spin configurations on the edges incident to the

single plaquette in A such that the sum of the 4 spins is 0. A

We can now define imprint BSCs: those that can be obtained by starting with free boundary

condition on some larger cubical set and then conditioning as in proposition 56.

Definition 58. Let X' be a nonempty union of r-cubes. An imprint boundary spin condition (or
imprint BSC) for X1 isaset &’ C Ly that satisfies the following condition. There exists some union
of r-cubes?” X 2 X', some partition of the r-cubes in X into 2 disjoint nonempty subfamilies A; and
A, (that is, taking n = 2 in notation 50), with X' = UQ ca; Q and some configuration w, € Q,,

such that

&= pxxi (p;sz (2771 (X3, ])
(where X? = Ugea, Q and other symbols as described in notation 50.) A

For r = 1, there’s a well-known description of imprint BSCs, often referred to as the domain
Markov property?® [Dum20, §1.2]: Every imprint BSC may be identified with a partition of €. Within
each block of the partition, all spins are required to be the same. There might be an analogous

topological characterization of imprint BSCs for general r, but we will not investigate this.

Proposition 59. Every imprint BSC is a cyclic BSC (that is, in proposition 56, &' is a cyclic BSC for X1.)

27Tt would not weaken this definition to take weak inclusion X O X' instead, because the free spin condition &’ = X1
can be obtained by conditioning on an all-closed external configuration as in proposition 54.
28This terminology is questionable because there is no true conditional independence—see proposition 53.
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Proof. Let w; and &' be as in proposition 56. For this proof, we’ll use the coordinate projections

P = sz)S : Zz XZg — Zg,

P = pX1)S : ):1 X):g — Zg.

In fact 7, take o to be the coordinate injection « : (2/qZ)¢ — (Z/qZ)¢*®2. Its dual map is K* = p

1

(fact 10). The composition p o p~ ' is the identity, so the second part of fact 7 says

ANz qz)e ok~ ' = po Ann g qgyexs; - (%)
By fact 8,
Z N (XE,) =ker8" ! =kerd; = Ann 7 exs, IMOr = ANN ;o 7yex; Bro (X))
Applying p and combining with (x) gives
p(Z771(XZ,) = p(Ann(Z/qZ)exBZ Br_1(X%,,)) = Annz 47 KT (Bro1(X3,))-
Therefore,

& = {(o1,0e) €L1 xZLe | (02,0¢) € ZT_1(X3U2) for some 0, € X5}
= (0 (p(Z27(X%))))

= (p)7 " Ann(zqze kT (Bro1(X3,,))-

Recall that B, _ (Xﬁ,z) =imd, = im0y = By_1 (X%UZ) because r > 1. Take any b € (Z/qZ)¢ such
that
k(b) € Br1(X%,) = Bra(X3,) € Zra(X3,)

(every reduced boundary is a reduced cycle.?) Then b € ZT_1 (UEeS E), because the extra 0
coefficients in k(b) don’t contribute anything to the coefficients on (r — 2)-cubes after applying
9,_1. This proves that k' (B+—1(X3,,)) <€ Zi 1 (Ugee E). It follows that &’ is a cyclic BSC for
X'. To be explicit: Take = = Rk TBr 1 (X2, ,) in the definition of cyclic BSC, where « : (Z/ qZ)¢ —

PBut, if v = 1, not every (r — 1)-cycle is a reduced (r — 1)-cycle, which is the whole point of using the reduced
homology here.

74



(Z/ qZ)KM (ox!) — C,_1(9X") is the coordinate injection (this follows from the first part of fact 7
with o« = k.)
Actually, we’ve proved slightly more: &’ is induced by a family of cycles in (¢ ¢ E, which may

be a strict subset of 0X. O

The converse to proposition 59 does not hold in general: It’s not true that every cyclic BSC is an
imprint BSC. As a counterexample, take the Potts model with r = 1 and q = 4, and let X be a single
1-cube; that is, an edge joining two vertices v and w. In the definition of cyclic BSC let = = {c}
where ¢ = 2, + 2,,. Then ¢ is the set of all vertex spin configurations where the sum of spins has
even parity (there are 8 such configurations.) But any imprint BSC will either leave both spins free
or will require both spins to be equal (so an imprint BSC will have either 4 or 16 configurations.)

Proposition 56 described conditioning starting with free boundary condition, but we can be

somewhat more general.

Proposition 60 (Conditioning in the higher FK-Potts model). Take n = 2 in notation 50 andp € (0,1).
Let & be a subgroup spin condition on X that has the form (px x2) ™' (£2) for some subgroup £ C Zy:

(meaning that & is permitted to restrict spins in B, and € but not in Bq.) Then
PR,pyq (@1 W2) = 0% - (w1),  (wr,w2) € Q1 x Q
where &' C Ly is a subgroup boundary spin condition for X' given by

& = {(o1,0¢) €I x Z¢ | (02,0¢) € qu(Xﬁ,z) N &2 for some o5 € o}
= px,xt (Pxx2 [2771 (XG,,) N €%])

= pxx1 (Pxx2 [27 (X&) ] NE).
Proof. Take w; € Q. Similarly to the proof of proposition 56, conditioning on w, gives

PR p.q( W1 W2) o 9%, (w1, w))
o (1 _p)c(un)+c(w2)po(w1)+o(wz)’ZT—1 (X(w1,wz)) N E,‘

x (1 _p)c(wl)po(wﬂ‘zr—] (X(w1,w2)) N E,’
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= (1— p)C(wﬂpO(wﬂ

- Y lor,0¢) € Z7 N (X4 (02, 0¢) € Z7 1 (XE,,)] [(01, 02, 0¢) € £]
pbs
02€XH

— (]__p)cﬂvﬂpo(w1)

- Y lon,0e) € 277N (X (02, 08) € Z71(XE,,) N E7]
C)'gGZg
O1€EX,
02€X,H

— _ p)clwi)yo(wr)
(1—p) p

E [(o1,0¢8) € ZT 1 (X%,,)] E [(o2,0e) € Z7 ' (X5,)NE | w7 € Q.
og€EXe 02€EXH
O"]EZ1

Next, argue as in the proof of proposition 56, but with the group Z"~'(XZ,,) N &% in place of

ARl (Xﬁ,z). We arrive at

(pi’p)q((U] |(,U2) X (] _p)c(w1)po(w1)
: Z [(o1,0¢e) € 27! (sz N [(02,0¢) € 27! (Xﬁ)z) N &2 for some 07 € X,]
ogEle
01€5,
= (1—p)lerpoler 3 (o 00) € 77 (X}, ) N E]
og€Xe
o1€X,
— (] _p)c(w1)p0(w1)‘21‘71 (Xl)1) N (i/}

I
X (pi],p)q(wﬂ, w1 € Q])

where &' is as described in the theorem statement above.

The projections are group homomorphisms, so &’ is a subgroup of Ly:1. Moreover, &’ restricts
only the ¢ component, not the X1 component, and every (r — 1)-cube E € € satisfies E C X1, so
&' is a boundary spin condition for .. O

4.4 Further results

Here, we generalize several statements from sections 3.2 and 3.4. Proposition 61 (which generalizes

the first part of proposition 33) is needed for the proof of theorem 62.

Proposition 61 (Counting cocycles, with spin condition). Let & be a subgroup spin condition. The

76



dependence factor in eq. (17) satisfies

ICr—1(X, Z/qZ)|
1By—1(Xw, Z/qZ) + Ann ' E|’

12" (Xw, Z/qZ) N E| = w € Qx
where Ann~ "¢ = n ' Anné& C C,_i(X, Z/qZ) = Cy_1(Xw, Z/qZ) (see facts 5 and 6, taking
H = Ann"' & in fact 5.)

Proof. In this proof, the boundary (3,) and coboundary (5"~ ') maps will be those of the cubical set
Xw, and Ann will be the induced bijection from the collection of subgroups of C,_1(Xw,Z/qZ)
to the collection of subgroups of Lx = C™"Xw,Z/qZ) (see fact 6, noting in particular that

& = Ann Ann~! §.) For every w € Qx,

12" (X, Z/qZ) N & = |kers™' N §

= |kerd; N |
= |Ann(imd,;) N AnnAnn' £ | (by fact 8)
= |Arm(im dr + Ann~ ' &) ‘ (by fact 6)
|imd, + Ann ' g |
_ ICr—1(Xw, Z/qZ)|
|Br—1 (Xw, Z/qZ) + Ann™! E"
_ ICr—1(X, Z/qZ)| (by eq. (11). B

|Br—1 (Xun Z/qZ) + AI’II\i] E.’

Theorem 62 generalizes theorem 35. Observe that if & is a subgroup of Xx then (p;t"(’p’ q 18
(strictly) positive when p € (0,1), because 27 " Xw, Z/qZ) N & # @ for every w € Qx. So

theorem 34 applies to (pi p,q justasit does to @x p q-

Theorem 62 (Strong FKG, with spin condition). For every p € (0, 1) and every subgroup spin condition
&, the higher FK—Potts measure (17) has the strong FKG property.

Proof. Follow the proof of theorem 35, except now use the cocycle count formula from proposi-

tion 61, and at the end apply the more general result from fact 14 taking D = Ann~' &, O

Proposition 63 generalizes proposition 36.
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Proposition 63 (Comparison inequality, with spin condition). For every subgroup spin condition &, if

0<p1 <pz2<1then

3 3
(px)p] »q <St (vapZ)q :

Proof. Follow the proof of proposition 36, replacing |27~ (X, Z/qZ)| with |Z"" (X, Z/qZ) N
&l.

Recall the notation W,, from section 3.4. Let (W,,) i B.q = 7'(35( p,qWy- Theorem 64 generalizes

theorem 41.

Theorem 64 (Expectation equals probability, with spin condition). For every subgroup spin condition

& and every (r — 1)-chainy € Cr_1(X, Z/qZ),
Wy)%pq = PXp.q(Y € Bro1(Xw, Z/qZ) + Ann~ ' £).

Proof. We first consider the case 0 < p < 1. Let & = Ann~'&. The set & is a subgroup of
Cr—1(X, Z/qZ) (= Cr—1(Xw, Z/qZ)) (see fact 6.) Define w., to be the conditional expectation

wy(w) = Hi,p)q (Wy | w) = Z Wy(G)ui,p,q(ﬂ w)
oEXX

B [o € Z77" X, Z/qZ) N E]
2 TR, Zraz) ]

O‘EZX
1
= 7 > o)
“i Nker 8™ ‘ oc&nker 67!
1
= - o(v) (by fact 8)
‘EﬂAnn(lm aT)\ O‘GE,OA%Umar) y
1
_ : o(y) (by fact 6)
‘ Ann(im 0, + E,/)’ UeAmﬁZmarJra/)
= [y €imd, +&'] (by fact 12)
= [y € Br-1Xw, Z/qZ) + Ann~! &l w € Qx.

(This is valid for all w € Qx, because & is a subgroup and therefore 2" " Xw, Z/qZ) N E # @.)

Thus, by the law of total expectation,

<WV>>£<,I3,q - @i,p,qu - (pim,q (v € Br1(Xaw, Z/qZ) + Ann™ ' &).
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That takescareof 0 < p < 1. If p = 1 then (pX Py (w!) =1 (where w! is the all-open configuration),

and the above derivation is valid for w = w'. Thus, the equality of functions
wy(w) = [y € Br1(Xw, Z/qZ) + Ann~' &J-

holds with probability 1, and we may take the expectation on both sides just as before. O

A simple example for theorem 64 is the Ising model (spins 0 and 1) with wired boundary
condition, that is, & is the set of all spin configurations that assign equal spin to each boundary
vertex. The group Ann~' & consists of all 1-chains in which an even number of boundary vertices
have spin 1. Let y = 1, + 1,, for vertices v,w. The expectation of W, is equal to the probability
that y differs from a boundary by some element of Ann~" &, and is always equal to 1, even if v and
w lie in distinct connected components of X. But for free boundary condition the expectation of
W, is 0 if v and w lie in distinct components. In general, to see why it’s necessary to assume that
& be a subgroup, consider the following (trivial) counterexample: Let q = 3, take y = 1¢ for some
Q € K,_1(X), and let & = {c} for some ¢ € Zx such that ¢(Q) = e?>™/3. Then <Wy)§"<’ﬁ’q Z R.

Corollary 65 generalizes corollary 42.

Corollary 65. For every subgroup spin condition &, if 0 < 31 < B2 < oo then

for every (v — 1)-chain vy.

Proof. Asin the proof of corollary 42, this follows immediately from theorem 64 and proposition 63,

now taking instead the increasing event
{wGQXWGBT 1Xwy,Z/qZ) + Ann™ E} O

4.5 Sharp threshold

Lastly, as promised on page 51, here is a result about the sharpness of thresholds. Its proof is a

straightforward extension of the proof of [Gri06, Theorem 3.16]° which applies to the random-

3]t appears there may be a small error in the statement and proof of [Gri06, Theorem 3.16]: in place of our factor

it contains min {1, 4 }

p+q(l—p) (p+q(1—p))?
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cluster model on arbitrary graphs. A few consequences regarding thresholds may be found in
[Gri06, p. 42].

As a simple example, take d > 2 and r = 2 and q > 2, take A = G (the group of all lattice
translations, rotations, reflections, and compositions thereof), let y be a nontrivial 1-cycle supported
on some 5 x 5 square, and let A be the event that some translate (under ) of y belongs to
By (Xw, Z/qZ). Since m > %, the derivative %(pi)p’q(/\) at the threshold (p such that
cpi)p)q (A) = %) is bounded below by ﬁ log X+ (X).

Proposition 66 (Sharp threshold). There exists a constant ¢ € (0,00), independent of all parameters,
such that the following holds. Let X be the modified box with periodic boundary spin condition & as described
on page 61, and identify X with a subset of the d-torus T4 = R /2NZ4. Let § be the group of all isometries
on T that send integer lattice points to integer lattice points, and let A be a subgroup of G such that K. (X)

is A-transitive. Let A C Qx be an increasing event that is invariant under A. Then, for every p € (0,1),

d c

3 ; 3 3
d*p(Px)p,q(A) = mmm{@x,p,q(A)a 11— (Px,p,q(A)} log [, (X))].

Proof. The periodic boundary spin condition and the modification of the box ensure that (piyp) q

is G-invariant. According to [Gri06, Theorem 2.48] there exists ¢ such that, for all X, A, and p as

described above,
d

el 3

C<P>£<’p,qUQ)(1 - (Pi,p,q (Ja))

. z 3
r(1—7p) mln{(pX»PM(A)’ - (PX,p,q(A)} log X+ (X)|

where ] g is the event that Q is open for some given Q € X, (X) (by invariance, the particular choice
of Q doesn’t matter.)

We produce bounds on the probability ¢ i)p’ q(J@) by conditioning on all r-cubes in X (X) \{Q}.
For w € Qx write w™ and w™ for the configuration w modified on Q to make Q open and closed,

respectively. Let M, = {w™, w™}. Then

0%pqle I Mo) = 0% (W' [Mg)
(piﬂ%q(er)
(Pi,p,q(wﬂ + @i,p,q(w_)
_ p|Z" " (X))
p|Zr 1 (X )| + (1 =p) |27 (X )|
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For every w € Qx the ratio 1271 (X ) / |27 1(X+ )| is a natural number that divides g, because
erl (Xuﬁf) = {C € er1 (Xw*) | O-Q(C) = ]}

and 0@ is a group homomorphism into the group of complex roots of q. So

P
opalla I Ma) € | fp| and
q(1—p)
1= 0% pqla 1 Ma) € P—P’p+q“_pﬂ-

By the law of total probability, the same bounds hold for ¢ i)p) q (Jo)and 1 — (pi)p) q (Jo), respec-

tively. Therefore,

*XpaJQ)(0 = 0% pq00) 1
p(1—p) ~ p+q(-p)
which combined with the inequality above completes the proof. O
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5 Infinite volume

Sections 3 and 4 describe the the higher Potts and FK-Potts models in a finite region, but of course
statistical physics is concerned with phenomena that emerge as the number of interacting elements
tends to infinity. In lattice gauge theories, a major open problem is to understand the decay of
a Wilson loop expectation with the size of the loop. It has been argued that if the Wilson loop
expectation decays exponentially in the area enclosed by the loop, then the gauge theory has quark
confinement, meaning that quarks do not appear in isolation [Cha21]. See also [Aiz+83], which
studies the sharpness of the transition from exponential-in-area decay to exponential-in-perimeter
decay in the case of (independent) Bernoulli plaquette percolation.

We won’t discuss the decay of Wilson loop expectations, and we won't even carry out a complete
investigation of infinite-volume limits—indeed, even for the Ising model on Z? the infinite-volume
limits are not fully understood [Bov06, p. 72]. We can, however, give some definitions and a few
preliminary results.

We will focus on the infinite-volume higher Potts model, using the (finite-volume) coupling

with the higher FK-Potts model as a proof device.

5.1 Gibbs states of the higher Potts model

For the basic setup, we’ll take the DLR approach (due to Dobrushin, Lanford, and Ruelle [Bov06,
p- 51].) It would take us too far off-track to explain the DLR machinery in general, so the defi-
nitions given below are specific to our model. Unfortunately, despite efforts to keep this section
reasonably self-contained, a full understanding may be difficult without knowledge of the general
case. The interested reader can find introductions in [FV17, ch. 6; Bov06, ch. 4; EFS93, §2] and
more comprehensive treatments in [Rue04; Geol1].

Roughly speaking, a (DLR) Gibbs state is a measure on the space of all spin configurations on an
infinite lattice, whose conditionals on all finite sublattices are described by Gibbs ensembles: prob-
ability measures of the form % e~ with appropriate Hamiltonians 3. (This kind of roundabout
definition is needed because there’s no way to define a Hamiltonian on the entire infinite lattice at
once.) Thus, a Gibbs state can be thought of as describing a macroscopic physical system that is
everywhere at microscopic equilibrium. The Gibbs states include all infinite-volume weak limits
of the (finite-volume) Gibbs ensembles [Rue04, §1.9]. Moreover, the variational principle dictates

that the Gibbs states that are translation-invariant are precisely the measures that maximize the
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topological pressure [Rue04, §4.2], a quantity that can be interpreted as the negation of free energy
density. So, in essence, the DLR framework captures the idea that a spin system is globally at
equilibrium if and only if it is locally at equilibrium. See [EFS93, pp. 933-934] for more on the
physical interpretation of Gibbs states.

Gibbs states are by no means the last word on lattice spin systems. A more general framework
is that of specifications, described in [Geoll]. In loose terms, non-Gibbsian specifications are
those where the local conditional measures cannot be described by a Hamiltonian based on a
spin interaction that decays sufficiently rapidly with distance. Non-Gibbsian specifications are
not uncommon. They often crop up when taking scaling limits [EFS93]. Also, even though the
higher Potts model can be described by a Gibbsian specification, the same cannot be said of the
random-cluster model or our higher FK-Potts model. Infinite-volume FK-Potts measures can be
defined via non-Gibbsian specifications (as is done in [Gri06, §4.4]), but we will not investigate this
approach here. Instead, we’ll focus on the Gibbs states of the higher Potts model because, after all,
the ultimate objective is to understand gauge theories.

Our first task is to define the configuration space . A configuration o € X will be a simultane-
ous assignment of a spin to each (r — 1)-cube in R¢ (the parameters 1, d, p, q, B are as described at
the beginning of section 3.) Formally, recall that in finite volume (section 3.1) we took configuration
space Ix = C" (X, Z/qZ) = (C+_1(X, Z/qZ))” = ((Z/qZ)**X))™. Our chains, cochains,

homology, etc. were defined only for finite volume, so we now define
L= <(Z/qZ) (561 (R‘”)) -

where (Z/qZ)%—1®)) js the direct sum of countably infinitely many copies of the group Z/qZ,
one for each (r — T)-cube (recall from definition 15 that the parentheses in the exponent indicate
direct sum, as opposed to direct product.) That is, (Z/qZ) % (B) is the group of all finitely-
supported assignments of coefficients in Z/qZ to the (r — 1)-cubes. Thus, by fact 16 and the
identification Z/qZ = m, the configuration space I is identified with the direct product

£ = (z/qz)’ %)

(all assignments of coefficients to (r — 1)-cubes, now without the requirement of finite support.)
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More generally, let
I = ((2/qZ)M)™ = (zZ/qz)  forall A C K, 1(RY).

Endow XA with the product topology; that is, take the discrete topology Z/qZ and the product
topology on (Z/qZ)". The space £ is compact for every A C K, _1(R%). Let pa : £ — I be the
coordinate projection.

The following terminology is standard [EFS93, pp. 895-896; GHMO01, §2.3].

Definition 67. An observable is a Borel-measurable function f : ¥ — C. A local observable is a
function f : £ — C that may be written as f = fA o pA for some finite A C X, _; (R49) and some
function fA : Zo — C. That is, a local observable is one that depends on the spins of only finitely

many (r — T)-cubes. A

Any element y € (Z/ qZ) e (RY)) (such as a Wilson loop: section 3.4) thus gives a local
observable W,, : £ — C, 0 — o(y). Once we have a measure on X, we may define the observed value
of y to be the expectation of W,.

For the exposition below, we’ll introduce some special notation.

Notation 68. The reader may refer to fig. 4 as a visual guide. Take a finite nonempty set A C
Kr_1(RY). Let
Xa = J{Qe X (RY) TP eA:PCQL

That is, X 5 is the cubical set consisting of all r-cubes incident to some (r — 1) cube in A. Write
A = ((Z/92)™)

(XA, x = ((Z/q2)™N),

A=K
/\/ = :K:T‘—](X/\)\A)
e

AC = B (RDNA, Zae = ((2/q2)M))7

The set A’ includes, but may be strictly larger than, the set X,_1 (90X ) of all boundary (r—1)-cubes
of XA. Notethat Z = Xac ® XA, and Zx, = Z4. Here Zx, is defined as in section 3.1 taking X A in
place of X; notice the distinction between ~ 5 and Zx . Let

&n=1s € Zx|slar =mnlar} for every n € Zc.
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The set &, is a spin condition for XA. In the terminology of section 4, if A" = K;_1(0X) (which

is not the case in fig. 4) then &, is a point BSC for XA. A
o o o
o o A = [o]
[—
© ° % _ }fo}
o Xa= U{e,0,—}
©o o o

Figure 4: Example set X5 C R? for r = 1. Here A consists of 8 vertices, and X is the union of all
displayed edges together with their endpoints.

Definition 69. A (DLR) Gibbs state in the higher Potts model is a Borel®! probability measure 7 ¢
on I that satisfies either, hence both, of the following conditions (which are equivalent by [Rue04,

Theorem 1.8].)

(a) (Conditionals)

For every nonempty finite A C K, _1(R¢),

£
Tg,q = (PATp q) ® KA where Ka(n, ) := (pATy) 5 o)(-), N € Zne.

That is, the operation of (i) taking the  c-marginal of g 4, followed by (ii) taking this
marginal’s product with the probability kernel K defined as the Z A-marginal of the condi-

tioned Potts measure (eq. (16)), gives back the original measure g g.

(b) (Marginals)

For every nonempty finite A C X, _1(R%), there exists a probability measure A° on ¢ such

that

PATR,q = J }\c(dn)p/\ﬂ)a(j\’ﬁ)q(')-

T ac
That is, the marginals are convex combinations of finite-volume higher Potts measures with
boundary conditions. (Actually, these convex combinations are always finite, because there

are only q\'l distinct sets &,,.) A

31The Borel o-algebra on X is the o-algebra generated by the cylinders (the finitely-supported events).
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Although we have no motive to do so, it’s also possible to define Gibbs states p,, 4 for the

Edwards-Sokal coupling on the joint configuration space

{(o, w) € ((Z/qZ)(“*‘ “R‘”)) ~ ¢ {0, 1Y% (BY) ] (0,w) € F}

where F = {(0,w) € Zx x Ox | VQ € K;(RY) : w(Q) =1 = oq = 1}. This configuration
space is defined as a cartesian product restricted by a finite set of forbidden patterns, analogously
to shifts of finite type. See [Rue04, §1.1] for the general theory of Gibbs states on such “restricted”
configuration spaces.

The reason that one cannot define Gibbs states on the higher FK-Potts model is that (in finite
volume) the change in probability by opening or closing a single r-cube can depend on individual
r-cubes arbitrarily far away. Consider the case r = 1 and q > 1, where closing a single edge can
increase the probability of a configuration by a factor of either %3 qor %3, depending on if doing
so increases the number of components. But whether the number of components increases can
depend on whether the two components are linked by a single edge arbitrarily far away. These
long-distance effects were already hinted at in section 4 where we discussed the Hammersley—
Clifford theorem: The spatial Markov property does not hold for FK-Potts, no matter how fat we
make the wall (on which we're conditioning) between two regions, so there is no Hamiltonian with
finite-range interactions.*

We could try to work around this difficulty by defining higher FK-Potts “hidden Gibbs states”:
take a Gibbs state in the higher Potts model, open permissible r-cubes independently with proba-
bility p, and then forget the spins.* This would be in line with our goal of understanding the higher
Potts Gibbs states. Unfortunately, it isn’t obvious what the connection is between (i) these hidden
Gibbs states, (ii) the infinite-volume random fields given by the non-Gibbsian specification of our
finite-volume higher FK-Potts model, and (iii) the thermodynamic limits of the higher FK-Potts
model. The connection between the latter two is poorly understood even for r = 1 [Gri06, p. 79].
For these reasons, we won't discuss higher FK-Potts in infinite volume. There is, however, some
work done in this area in [DS23, §4.2, §5.2], which instead first defines the infinite-volume higher

FK-Potts model and then uses it to define the infinite-volume higher Potts model (this requires

%2 Actually, for a Gibbs specification it’s not necessary to have finite-range interactions, but it is necessary that the
interactions satisfy a certain summability condition (which, in the FK-Potts model, the do not.) See [Rue04, §1.2] for
details.

3Formally, we're pushing forward a Gibbs state through a probability kernel from X to Q. To prove that it’s a
legitimate kernel, use the result quoted in footnote 11.
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uniformly picking a cocycle from an infinite collection of compatible cocycles).

5.2 Thermodynamic limits of the higher Potts model

Now, a few words on the thermodynamic limits of the higher Potts model. We'll follow precisely
the definitions in [Rue04, ch. 1]. Let (A,) be a sequence of finite subsets of X, 1(R%) with
An — Ky_1(R%), in the sense that every (r — 1)-cube belongs to A, for all but finitely many
n. For every n let u,, be a probability measure on X, . For all finite A C B C X,_; (RY) let
PAB : LB — La denote the projection onto the A marginal, and likewise pa : £ — . It can
be shown by a diagonalization argument [Rue04, Proposition 1.4] that there exists a subsequence

(An,) such that the limit
Lim pan,, tn, = VA
1—00 t
exists for every finite A C K,_4 (RY) (here, as before, p AAn, Hny is the X A-marginal of p,,, and

convergence is in the usual sense of weak limits of probability measures on Z4.) For every such

subsequence (A, ), there exists a unique probability measure \ on X such that

YA =pAl

for every finite A C K,_1(R%). Such a measure 1 is called a thermodynamic limit of the sequence
(1n). Of course, a sequence of measures can have many distinct thermodynamic limits (by passing

to distinct subsequences.)
Definition 70.

¢ Take a sequence of cubical sets X, and let A, = K;_1(Xy). Assume that

(i) each X, is a finite union of r-cubes (as described at the beginning of section 3);

(ii) for eachn, if Q is an r-cube whose every ((r — 1)-dimensional) facet belongs to A,,, then
Q € Xp,** and
(iii) An — Kr_1(RY) (therefore, X;, — JK+(R%)) asn — oo.
A thermodynamic limit of the corresponding higher Potts measures with free boundary

condition, 7tx,, g,q on Z A, (defined in eq. (5)), will be called a higher Potts thermodynamic limit

with free boundary condition.

3This condition ensures that the Hamiltonian takes into account every possible interaction between elements of A,,,
and not merely the ones associated with those r-cubes that happened to be included in X,,.
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* Take a sequence of finite sets A,, — K,_1(R%) and a sequence (1,) where n,, € £ Ac. Let
XA, ¥ and &, be as defined in notation 68. A thermodynamic limit of the higher Potts

measures ﬂirtﬁ’ q on A, (eq. (16)) will be called a higher Potts thermodynamic limit. A

Definition 70 is slightly awkward, and could probably be replaced by a equivalent definition
that is simpler. It's presented in this form so as to be obviously compatible with [Rue04, ch. 1].
There is only one slight difference: Our sets A, are not just any finite sets of (r — 1)-cubes, but
rather they always arise from the sets X;, which were declared to be unions of r-cubes. However,
this doesn’t cause any loss of generality. For if we defined a more general higher Potts measure
TA L, B,q ON LA, according to the general treatment in [Rue(4, ch. 1], then this measure would put
uniform independent spin on any isolated (r — 1)-cube (that is, one that is not part of an r-cube all
of whose facets are in A,,). For that reason, once A,, is large enough, the marginals pA would be
no more general.

Importantly, it’s a general result [Rue04, Theorem 1.9] that every thermodynamic limit with
free boundary condition is a Gibbs state, and that the set of all Gibbs states is the closed convex hull
(in the usual weak topology) of the set of all thermodynamic limits (i.e., for all possible sequences
of boundary conditions (1))

What happens when we take an infinite-volume limit with a boundary condition that isn't a
point BSC as in definition 70, but instead is a more general BSC (for example, wired and periodic
boundary conditions in the Ising and Potts models?) Then still every thermodynamic limit is a
Gibbs state. Such situations are discussed in great generality in [Geoll, ch. 4], which calls them
“random boundary conditions”.

We’ll now prove that the thermodynamic limit with free boundary condition does not require
passing to a subsequence (A;,,) when taking the weak limit. In particular, the higher Potts
thermodynamic limit with free boundary condition is unique. The proof uses the coupling to the
higher FK-Potts model along with its strong FKG property, which is invoked through a proxy,
corollary 55.

Proposition 71. There exists a unique probability measure 7 g on X such that for every sequence (Xy)

(and Ay := Ky_1(Xn)) satisfying the three conditions given in the first paragraph of definition 70,

. — . . C d
nlgrgo PAARTX,B,q = PATIR, g for each finite A C Ky_1(R). (19)

3These Xa,, , on the other hand, will not necessarily satisfy the special condition discussed in the previous footnote,
although enlarging them to do so would not modify the measures th(':l‘fﬁ‘ -
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Furthermore, this unique mg ¢ is invariant under all symmetries of 7.8 (viz., all translations, rotations, and

reflections, and compositions thereof.)

Proof. Recall Xo, A, and L5 = Ix, from notation 68. Pick a sequence (Xy,) satisfying the three
conditions.

Let 7t 4 be some thermodynamic limit of (7tx,, g,q) (i-e., after passing to some subsequence,
eq. (19) holds.) To show that 7 4 satisfies eq. (19) without passing to a subsequence, it suffices to
prove the following statement. For each finite nonempty A C K,_1 (R%), every function f : £+ — C

has converging expectations

T}E;réo(px/\nﬂxnaﬁ)q)f = (pﬁ-[ﬁ,q)f’

The reason it suffices to use A is that any g : £ — C may be composed with the projection p , %
to give a functionf =gop,5: Z5x — C.

Fix some finite nonempty A C K,_1(R%). The characters of £, are the evaluation maps W,, :
Zx, — Cwherey € C,_1(Xa, Z/qZ), as was observed on page 58. By Fourier decomposition, f
may be written as a linear combination of these functions W,,. Therefore, by linearity of expectation,
it suffices to prove

lim (pxa, 7X,,8,¢)Wy = (PR7E,q) Wy, Y € Cr1 (XA, Z/4qZ).

n—oo

We know already that there is some subsequence along which convergence holds for every
v. We'll show that passing to a subsequence is unnecessary, by proving that the expectation
(PAA, TXn,B,q) Wy is monotonically increasing in X;, for every y: that is, the condition X;, C Xin
(equivalently, A C A.n) implies (px/\nﬂxmﬁ,,q)wY < (pKAmﬁXm»Baq)WY'36

Take n large enough that A C An. Then Xa C X, (because of the second assumption on (X)),
so we can identify each vy € C,_1(Xa, Z/qZ) with ky € C+_1(Xn, Z/qZ) where k is the injection
(definition 9.) Thus, we may consider each W,, to also be a function on a larger domain, W,, :

Ix, — C, and (by the expectation-of-expectation “tower law”) (px A 7x,,8,q)Wy = Ttx,,,p,qWy-

% A minor technical clarification: Although lim, A,, = X,_;(R%) and thus lim, X,, = [JX,(R%), we never assumed
n<m = X, C X,,. Still, for every n there does exist M such that M < m = X,, C X,,,, and that is enough for the
existence of the limit limn, o (PxA, Tx0,8,q) Wy -
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According to theorem 41, this expectation coincides with the probability

PX,,p,q (Y € By (Xn,wa Z/qZ))-

These probabilities are indeed monotonically increasing in X;, by corollary 55.

This proves that 7g 4 satisfies eq. (19) for our chosen sequence (X ). As mg 4 is uniquely
determined by its marginals pa7g 4, it follows that there’s exactly one thermodynamic limit
associated with each sequence (X;,). To see that 7tz 4 does not depend on (X5, ), observe that for any
other sequence of cubical sets Yy, we may interleave with X, to get the sequence (Xy, Y1,X2,Y2,---),
along which there is still only one limit.

To show symmetry-invariance, let T : R¢ — R4 be an isometry satisfying T(Z4) = Z4. Let T
act on Z, and more generally for all A C K;_1 let T map XA into X1x, as T(0)(Q) = o(T71(Q))
for o € LA and Q € A. We must prove Trg ¢ = mg . From the symmetries in the definition of
Ttx,.,B,q it follows that for sufficiently large n every function f : Zx, — C satisfies

(p(TK)(TAn)”TXmﬁ,q)(fOT_1) = (PAA, TXn,B,q)T-
Sending n — oo gives

(PrATp,q)(fo T = (PAT,q)T

or, equivalently,

7TB,q(f°T71 opra) = mp,q(fopx).

But T=' o pyx = pxo T, so this implies
T g q(fopy) = mp,q(f 0 px).

Therefore, Trtg ¢ = 7, 4, because every function depending on only finitely many spins may be

expressed as f o py for some finite A and some f. O

In particular, proposition 71 proves the existence and translation-invariance of infinite-volume
limits of Wilson loop expectations in the higher Potts model (with free boundary condition).

Corollary 72 is connected to two recent results:

¢ [Cha20, Theorem 5.4], which shows existence and translation-invariance of free-boundary
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infinite-volume limits of local observables in the Ising lattice gauge theory (r =2 and d = 4)
at weak coupling (that is, sufficiently large (3), and whose proof involves a specific estimate

on the decay of correlations.

¢ [FLV21, Theorem 4.1], which shows existence and translation invariance of free-boundary
infinite-volume limits of local observables in the clock (planar Potts) lattice gauge theory
(r =2and d = 4, and general q) for all § > 0, and whose proof uses an estimate known
as Ginibre’s inequality but otherwise is very similar to the proof here. It’s also mentioned
[FLV21, p. 3] that the proof can be extended to a general finite abelian group and a general

unitary faithful irreducible representation.

Similar results on the existence of infinite-volume limits for free boundary condition have been
known since at least 1982 (see the disussion and further references in [Ca020, p. 1441].) Corollary 72
extends these results to arbitrary cell dimension r in the special case of the higher Potts lattice gauge

theory.

Corollary 72. Take (Xy) as in proposition 71, and let v € C,_1(X, Z/qZ) for any cubical set X C R<.
Identify 'y with the corresponding element of Cr_1(Xn, Z/qZ) for all Xy, 2 X (by assigning 0 to all new

r-cubes as before.) Writing (Wy)x...g,q = Tix,.,p,q Wy as in section 3.4, the limit of expectations

hm <W'Y>Xn>(5>q'

n—oo

exists, is real, is independent of the particular choice of the sequence (Xv,), and is invariant under lattice
isometries (in the sense that the limit is unchanged when 7y is translated, rotated, or reflected.) Moreover, if

0 < P71 < P2 < oo, then

0 < lim <Wy>xn,f31,q < lim <Wv>me52>q < L

n—oo n—oo
Proof. Immediate from proposition 71 and corollary 42. O

Next, a correlation inequality. For the Ising model in finite volume, it overlaps with two of
Griffith’s inequalities [Gri67, Theorems 2, 3] and is also referred to as one of the GKS inequalities

[Geoll, p. 456]. Note that W, ,, = W,,, W,,, (pointwise product on the right-hand side.)

Corollary 73. Take (Xy) as in proposition 71, and let y1,v2 € Cr_1(X, Z/qZ) for any cubical set
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X C R4, Then, for every p € (0, 1),

Tim Wy sy, )x0s,0 > (lm (W )x,p,a ) (m (W, )x,p,q) -

Proof. Take n large enough that X;, O X. For every w € Qx,, if v1,v2 € Br—1(Xn,w, Z/qZ)
then v1 +v2 € Br_1(Xn,w, Z/qZ) because the boundaries form a group. The two events {w :
Y1 € Bro1(Xn,w, Z/qZ)} and {w : v2 € Br_1(Xn,w, Z/qZ)} are increasing. Thus, by positive

association (see theorem 35, which entails inequality (13)),

PXn,p,q (Yl € By (Xn,u.n Z/qZ))
“PXn,p,q (VZ € By (Xn,w» Z/qZ)) < PXn,p,q (YMVZ € By (Xn,w» Z/qZ))

< ©X,,p,q (Y1 +7v2 € By (Xn,w» Z/qZ))-

By theorem 41 it follows that

<WY]+Y2>Xn,Baq - <WV1>Xn;E’»q<WY2>Xn»Baq 2 0'

Now take the limit as n — 0. O

Incidentally, there exists another, very general way to prove invariance under symmetries. It’s
a general property of Gibbs states that for every Gibbsian specification that is invariant under a
symmetry group of the lattice, every free-boundary thermodynamic limit is invariant under the
same symmetry group. And analogous results hold for non-free boundary conditions, provided
the boundary conditions themselves have symmetries. See [Geoll, pp. 91-92, Examples (5.20)(1)—
(2)].” The same reference also shows invariance under symmetries of the spin group: in our case
of the higher Potts model, the free-boundary thermodynamic limit 7tg 4 is invariant under the
operation of spin reversal (negating the coefficient of each (r — 1)-cube simultaneously.)

For general (non-free) boundary conditions, thermodynamic limits of the Potts model are
not necessarily translation-invariant. The best-known example is the non-translation-invariant
Dobrushin states in the Ising model in dimension d > 3, which are obtained by taking the infinite-
volume limit of boxes with spin +1 on boundary vertices whose first coordinate is nonnegative,

and spin —1 on boundary vertices whose first coordinate is negative [FV17, §3.10.7; Bov06, Remark

%The cited examples apply directly only to r = 1 but the theorems they reference apply to all r.
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4.3.19].

It’s well-known, however, that for strong coupling (that is, when f is sufficiently close to 0)
there exists a unique Gibbs state and hence only one thermodynamic limit—which is therefore
invariant under the symmetries of Z4 by the arguments above. This is known as Dobrushin’s
uniqueness criterion [Geoll, ch. 8]. From [Geoll, Proposition 8.8] we directly calculate that the

higher Potts model has precisely one Gibbs state whenever

1
(d=—r+1@2 =1)

0<pB <

For weak coupling (large {3), the situation is more complicated. In the Potts model (r = 1 and
d > 2) it is known that there exists (3. such that when 0 < 3 < 3. there is a unique Gibbs state

and when (3. < {3 there exist ¢ mutually singular Gibbs states [GHMO01, Theorem 3.2].

93



6 Odds and ends

6.1 Examples of pathological surfaces

This informal section is meant to illustrate the difference between boundaries in the sense of
homotopy and boundaries in the sense of homology, to help clarify the concepts of section 2.2 for
readers unfamiliar with homology. The examples here are an elaboration on [AF84, §4].

As the first example, take a large flat rectangular sheet of plaquettes embedded in Z*4, remove
two plaquettes from it, and join the resulting holes by a tube, to get a plaquette surface homeo-
morphic to that pictured in fig. 5. Such an orientation-flipping tube is called a cross-handle in the
theory of classification of surfaces [Wee20, ch. 5]. (The middle of the cross-handle does not actually
intersect the rectangular sheet: move it out into the fourth dimension to avoid this.) The drawing
shows a smooth cross-handle, but of course it will actually be a rectangular tube with sharp cor-
ners. This surface is homeomorphic to a Klein bottle with a point removed. It is a non-orientable

2-manifold with boundary, whose boundary is the loop y bounding the large rectangle.

0o / Lo

~~ -

Figure 5: Plaquette surface with a cross-handle, overhead schematic (left) and oblique view (right).

The outer loop 7 is not contractible within the surface. To see why, embed the surface in R3 by
letting the middle of the cross-handle pass outside the rectangular sheet. Run a wire through the
cross-handle and extend the wire’s ends upward and downward (perpendicular to the rectangular
sheet) to infinity. The wire together with y form a nontrivial link, and the wire does not intersect
the surface, so there is no way to shrink y to a point within the surface.

However, now consider a cycle over Z/27 supported on the edges of vy, assigning coefficient
1 € Z/27 to each edge in y. The chain thus defined is a boundary in the homological sense: It is
the boundary of the 2-chain that assigns 1 to each plaquette in the surface.

On the other hand, if the coefficient group is either G = Z or G = Z/qZ with q > 3, then
the cycle that assigns coefficient 1 € G (or —1 as orientation demands, because as explained in
section 2.2 edges are not oriented) to each edge in y is no longer a homological boundary. To see
why, we argue by contradiction. Suppose that this cycle is the boundary of some 2-chain c. The

coefficient in c of each plaquette in the surface is already uniquely determined, because each edge
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iny determines the coefficient of its incident plaquette, and, since the cycle is supported ony, each
plaquette has equal (or opposite, again as orientation demands) coefficient to all its neighboring
plaquettes. But consider the two plaquettes that were removed from the sheet when adding the
cross-handle. Their boundary edges all have coefficient equal to 1, so the cross-handle forces the
identity 1 = —1. This can hold only for coefficient group Z/27Z. However, for G = Z/qZ and q
even, putting a coefficient of q/2 on each edge in 'y does give a boundary.

As a side note, for coefficients in Z it’s still not the case that every loop that is the support of a
boundary is contractible. One counterexample: In the double torus (i.e., the connected sum of two
tori: the genus-2 surface pictured in [Wee20, p. 253]), assign coefficient 1 to the plaquettes of one
torus and 0 to those of the other. The support of the boundary of this 2-chain is a loop running
around the waist of the double torus, which can be shown to not be contractible.

Again, take a rectangular sheet of plaquettes in Z*, and now remove three plaquettes, joining
the first and second hole with a cross-handle and joining the second and third hole with another
cross-handle, as pictured in fig. 6. Such a “surface” is not a 2-manifold, because the four edges
bounding the center hole are each incident to three plaquettes (one plaquette in the sheet and one

in each cross-handle.)

GReRS / e o

\\\\\\\

,,,,,

Figure 6: Plaquette surface with double cross-handle, overhead schematic (left) and oblique view
(right). The centres of the two bights do not intersect the sheet, but instead pass beside it in the
fourth dimension.

Again, the outer loop v is not contractible within the surface, by an argument analogous to
before.

But take a cycle of Z/qZ supported on the edges of v, assigning coefficient j € Z/qZ to each
edge. In order for this cycle to be a boundary, it’s necessary and sufficient for the plaquettes
in the flat rectangular sheet to have coefficient j; those in the first cross-handle, j (to satisfy the
zero-boundary constraint around the left hole); those in the second cross-handle, 2j (due to middle
hole); and (again) those in the sheet, —2j (due to right hole). So j = —2j, or 3j = 0. Thus, there
exists a nontrivial boundary supported on v if and only if ¢ = 3 (mod 3).

Now glue together the two previous examples along v, to obtain a set of plaquettes pictured
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schematically in fig. 7.

Figure 7: The previous two examples glued together along the outer loop.

Take coefficient group Z/6Z. Again we will consider boundaries supported on y. The contri-
bution to vy due to the top sheet (with the single cross-handle) is either 0 or 3; the contribution
due to the bottom sheet is 0, 2, or 4. So every cycle supported on y is the boundary of exactly one
2-chain. For other coefficient groups Z/qZ, y supports a nontrivial boundary if and only if q is
divisible by either 2 or 3.

The upshot is that we shouldn’t expect it to be geometrically obvious whether a particular
loop is a (homological) boundary in a given cubical set. But we can always answer this question
computationally using the methods described in section 6.2.

Such pathological situations do not occur in the classical case, r = 1 (the spins-on-vertices Potts
model.) If a pair of distinct points {x,y} is a homological boundary, i.e., 1x — 1y € Bo(Xw,Z/qZ),
then x and y belong to the same component—that is, the associated O-sphere is contractible
in the graph induced by the edges open in w. To see why, take a chain ¢ € C;(Xw,Z/qZ)}
with 9;¢ = 1x — 1. The support of ¢ is a subset of the set of edges open in w; these edges
induce a subgraph G. of X,,. We may assume that G, is acyclic because if d is a 1-cycle then
01(c —d) = d1¢c = T — 1. The support of 97c contains all leaf vertices (meaning: those incident
to exactly one edge) of G.. Thus, G, is an acyclic graph whose only leaves are x and y. It follows
that the edges of G. form a path connecting x and y.

Therefore, there’s no essential distinction between 0-boundaries in the sense of homology and
in the sense of homotopy. This, combined with theorem 41, might be one reason that the decay
of correlations is easier to analyze in the classical Potts model than in the Potts gauge (and higher

Potts gauge) theories.
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6.2 Algorithms

The models described above are amenable to computation via matrix arithmetic.

Counting cocycles

To compute the probability mass function in eq. (6) we must find 127" (X, Z/qZ)| = |ker 57 |.
The chain groups are modules over the principal ideal domain Z/qZ, and 8" is a module
homomorphism between chain groups. So 8"~ can be described by a matrix over a principal ideal

domain, M € M, xn(Z/qZ). Perform Gaussian elimination on M to obtain a Smith normal form,

D 0

M’ = , where D is the diagonal matrix diag(ds, d,...,d,) for some ds,...,d. € Z/qZ
0 0

with dy [ dy |-+ | dr and r > 0. Writing d; = [c;] with representatives ¢; € Z, the number of

cocycles is

27 Xo, 7/q7)| = |ker M’| = q“*r} kerdiag(dy, dy,..., dr)‘ = q" " H ged(cj, q).
1<<r

If we have a more general boundary condition ¢ (as per eq. (17)), where & is a subgroup of
Ix = C™1(X,Z/qZ), then we are tasked with finding the size of the intersection of two Z/qZ-
submodules of Xx. This procedure is hardly any more difficult: First, express & as the kernel
of some Z/qZ-module homomorphism « : Zx — A (as can always be done: the projection onto
the group quotient £/¢ is such a homomorphism.) Then, compute the size of the kernel of the
Z./qZ-module homomorphism (87", &) : £x — C"(X,Z/qZ) @ A via the method detailed above.

For information about Gaussian elimination and the Smith normal form of a matrix over a

principal ideal domain, see [Gor16, §14.2].

Conditional sampling

The first conditional, ux p,q(0 | w) (proposition 40), is uniform and therefore can be computed
immediately once we find the size of its support, 121 X, Z/ qZ)|, using the method just ex-
plained in section 6.2. And again, the variant with boundary conditions (proposition 49) presents
no additional challenges when & is a subgroup of Zx.

To compute the second conditional, px p,q(w | o), no special techniques are needed.

To sample o conditional on w, perhaps the easiest way is to first reduce to Smith normal form

as described in section 6.2, then sample each component independently and uniformly, and then
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transform back to the original basis. This works equally well when there are boundary conditions
(again, & should be a subgroup of Xx.) Contrast this to the the classical random-cluster model
(spins on vertices, r = 1), where each connected component in X, is independently and uniformly
assigned a spin.

Sampling w conditional on o is even easier: open each allowable r-cube Q (i.e., each for which

o0q = 1) independently with probability p, and leave all other r-cubes closed.

Coupling from the past

The strong FKG property proved in section 3.2 for the higher FK-Potts measure @x, , q—in partic-
ular, 1-monotonicity—is precisely what’s needed for monotonicity [Gri06, Inequality (8.9)] of the
Gibbs sampler (i.e., Glauber dynamics, or the single-site heat bath algorithm.) Monotonicity allows
us to use the “coupling from the past” technique for perfect sampling [Th600; Gri06, §8.4]. Without
monotonicity, coupling from the past would be computationally infeasible because it’s necessary
to simulate a separate Markov chain for each possible initial configuration; with monotonicity, two
chains are enough (one staring from the all-r-cubes-open configuration, another starting from the
all-closed configuration.)

This method lets us estimate Wilson loop expectations for small finite-volume lattices. If the
expectation of a Wilson loop W, is w, then @x ; 4 (y € Br_1Xw, Z/qZ)) = w (theorem 41.) So

the variance of an estimate W for w, computed as the mean of an independent sample of size n,

is Var(w) = Var (Bin(n,w)) = W“T? w) < ﬁ (where Bin(n,w) is the binomial distribution on n
elements.) A single sampling unit w can be obtained by simulating a pair of Markov chains on
Qx until they coalesce, and then the predicate w € B;_1(Xyw, Z/qZ) = im 0, can be computed via
Gaussian elimination, analogously to section 6.2.

Simulations of spin models have long been studied in the physics literature. See, for instance,

[ES88; KG95; KO12].

6.3 Ground states of the random-cluster model

In statistical physics, the ground states of a model (that is given as a discrete probability measure
on a configuration space) are the configurations with maximal probability mass.

Determining the ground states is often a useful early step toward understanding a model’s
behaviour. As a brief diversion, we’ll demonstrate by reviewing the simplest interesting example,

the iid Bernoulli model. Take configuration space O = {0, 1}E for some finite set E, and let
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Pp(w) = p°(@)(1 —p)e(®) where o(w) = [{e € E| w(e) = 1}| and c(w) = |{e € E | w(e) = 0}| for

w € Q. The ground states are

w? (the all-0 configuration) for0<p< %,
all configurations forp =1,
w! (the all-1 configuration) for % <p<l.

On the other hand, if 0 < p < % and E is large then, despite P, being maximized at w?, in

absolute terms Pp(wo) can be quite small. Consider the density observable d,(w) = Ol(g‘),

whose distribution is normalized binomial, ﬁBin(Z‘H,p). If dp, is the only available observable
then the macrostates are the sets My = {w e ‘ dp(w) = ﬁ} for k = 0,1,...,|El. Thus, the
ground state, considered as the macrostate My = {w®} among all macrostates, is actually very
unlikely to occur when [E| is large. Instead, there is another highest-probability state Mk where
K := argmax, P, (My). We can consider the members of M to be the typical configurations.
Borrowing language from statistical physics, define the energy U,(w) := —o(w)logp —

clw)lo — p) and entro w) = — 0 — 0 e ground state My has
(w)log(1 —p) and entropy S(w) := —°(¢) log *fgf — (¢ log (. The ground state Mo h

minimum energy, the state(s) M| g|/2), M[jg|/2] have maximum entropy, and the equilibrium state
M exhibits a kind of energy—entropy trade-off (in fact, K/|E| — p as |[E| — 00®; note however that
the variational principle concerning the free energy F, = U, — S [Rue04, p. 4] doesn’t quite apply
because in that context the equilibrium macrostate is the distribution Py, itself.)

We go on to investigate the ground states of the random-cluster model (not the general higher
FK-Potts model, but only the case r = 1.) Although the results here use well-known tools, they
have never before (to my knowledge) been published.

Recall from section 1 the random-cluster model on a finite graph G = (V, E),
@Gp,q(w) o (1=p)@pol@lgd@)p e (0,1), q € (0,00), we Q:={0,1}

where o(-) and c(-) are the number of open and closed edges, respectively, and k(-) is the number of
open clusters (that is, connected components in the subgraph induced by the open edges, including

isolated vertices.)

k+1 k+1
#To prove this, let f(k) = G;)Pk(] —p)<for0 <k <nandp € (0,1), and calculate f(f(g ) j: :
for0 <k <n.

99



The next result is a partial characterization of the ground states of @g p 4 in the case of
planar G. It also assumes another property of G: the face density of a configuration never
exceeds its edge density. More explicitly, let F and f be the number of faces in the graphs G and
Gw = (V, {x € E| w(x) = 1}), respectively, not counting the unbounded exterior face, and let E

and e be the number of edges in the graphs G and G, respectively. The property is

< for every w € Q. (1)

| =
m| o

Note that for w® and w' the inequality in () reduces to 0 = 0 and 1 = 1, respectively.

We restrict ourselves to g > 1. If g = 1 then @¢ p 4 reduces to iid Bernoulli, whose ground
states we’ve already examined. The method of proof in proposition 74 does in fact also handle all
0 < q <1, and the case 0 < q < 1 is interesting from the perspective of graph theory: for certain
values of p the ground states may be the spanning trees, the forests, or the connected subgraphs.
Incidentally, this also provides a geometric explanation for some of the weak limits as ¢ — 0

described in [Gri06, §1.5]. But further discussion for 0 < q < 1 is omitted due to time constraints.

Proposition 74.

Let G = (V, E) be a finite connected planar graph with at least one edge. Let p € (0,1) and q € (1, c0).

(i) If p < § then the all-closed configuration w® is the unique ground state of @G p,q-
(ii) If p > % and (1) holds, then:
@ Ifp < (1+exp [—Yetlog q])il then the all-closed configuration w® is the unique ground
state.
() Ifp > (1 +exp [-¥Y'logq] )71 then the all-open configuration w! is the unique ground state.

© Ifp = (1+exp [ log q] )_1 then w® and w' are both ground states. If moreover (t) holds

with strict inequality for all w € Q\ {w®, w'}, then there are no other ground states.

Proof. Maximizing @ p,q amounts to maximizing its logarithm, which (since c(w) + o(w) = [E)

satisfies

log ©G p,q(w) o o(w)log1 Ep +k(w)logq = (o(w), k(w)) - <log %, log q)

where - is the Euclidean inner product on R?. Therefore, the ground states are the configurations
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w € Q for which the point x, := (o(w), k(w)) € R? has greatest orthogonal projection onto the
P

vector vy g i= <10g , log q> € R%.

We will examine the geometry of the set S := {x«, | w € Q}, which depends only on the graph
G. This set S is pictured for several graphs in fig. 9 and fig. 10. Most points in S correspond to many
different configurations; the number of configurations associated with each point is indicated by a
numeral beside it.

Evidently, x,0 = (0, V) and x,1 = (E, 1), and these are the only configurations associated with
these two points. Every other configuration w must satisfy 1 < o(w) < E—Tand 1 < k(w) < V-1,
and also o(w)+k(w) > V (by Euler’s formula, eq. (21).) If w is a spanning tree then x,, = (V—1, 1);
removing edges one by one from this spanning tree (in any order) yields points (V —k, k) for all
1 < k < V. This explains the lower horizontal boundary and the lower-left diagonal boundary in
the displayed figures.

By assumption, q > 1, solog q > 0.

For (i), the condition p < % implies log % < 0, so the vector v, ¢ lies in the third quadrant.
In this case, it’s clear geometrically that w? is the unique ground state.

For (ii), the condition p > % implies log % > 0, so the vector v, 4 lies in the interior of the
first quadrant.

Let { be the line passing through x 0 and x,,1. We will show that if () holds then all points
Xw lie below ¢, and if (t) holds strictly as specified in (c) then all points x, for w ¢ (w0 w'} lies
strictly below ¢.

Recall Euler’s formula (the early form of fact 24),
V—E+F=1 (20)

where (overloading the symbols as usual) V is the number of vertices, E is the number of edges,
and F is the number of faces in G, not counting the unbounded exterior face. For the induced
subgraph G, := (V, {x € E | w(x) = 1}), to keep the notation compact we'll write e (= o(w)) for
the number of edges, f for the number of faces, and also k (= k(w)) for the number of components.
Euler’s formula for G, is

Voe+f=k 1)
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The line { is given in slope-intercept form by the equationy =

x+ V. Thus, for every w € Q,

X lies (weakly) below { <= k < 1_Eve+V
1-V
— f—e < € (by eq. (21))
1—-V+E
— f < e
E
F
— f < £e (by eq. (20))
f e
- < =
= <t (22)

Likewise, x, lies strictly below { if and only if ; < %

Assume (1), so that by the arguments above S lies within the convex hull of {x 0, X1, Xws}
where w? is a spanning tree (to be explicit: we’ve shown that every x, € S lies on the correct side
of each face of this simplex.) The slope of the normal to { (in the outward, top-right, direction) is
=7 (this is valid because we've assumed E > 1 and thus V > 1.) Recalling that v, 4 lies in the
interior of the first quadrant, we see geometrically that if the slope of v, 4 is strictly greater than
= then w? is the unique ground state; if the slope is strictly less than 1= then w' is the unique
ground state, and if the slope is equal to = then w® and w' are ground states. Moreover, in the

case of equality, under the strict inequality condition given in (c) there are no other ground states.

The slope of v, 4 is lolgglip' Rearranging the comparisons,
101;% = VF;1 — vg]logq = 10g13p (since p > 1)
= % = exp V_]logq}
= ];p S exp _—V_]logq]
= ; S T+exp :—Vg]logq]
= P §<1+exp [—Vg1logq]>1, 0

It bears mentioning that this method of proof has other applications, such as identifying
the lowest-probability configurations, or efficiently generating a graph that displays the entropy of

©G,p,q asa function of (p, q) (pre-compute the set S together with the labels as in figs. 9 and 10 and
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project the data orthogonally onto span{vy, 4} for each (p, q); time may be saved by parametrizing
Vp,q in polar coordinates.)

The code used to generate figs. 9 and 10 (for the proof of proposition 74) is listed in section 6.3.
Generating fig. 10 for S4 took 9 minutes on an AMD Ryzen 3 3200G desktop CPU, with 12 GB
memory allocated. A more conscientious implementation® would finish in seconds and allocate
less than one kilobyte. But because of combinatorial explosion it would not be useful to optimize
the code. The graph Sy, has 2F = 22™(n—1) configurations, so if we could compute k(w) using a
mere 226 clock cycles per configuration then (on a 3.8 GHz processor, single-threaded) analyzing
S4 would take one second, S5 would take 18 hours, and Sg would take two millennia.

The complete graph K, is not planar for n > 5, so fig. 9 displays S only for K3 and K4. Observe
from these images that for some graphs all points of S lie within the simplex, and for other graphs
this is not the case. Specifically, by the equivalence (22), the condition (t) holds for K3 and K4 but
not for the graphs K3 + K3 and K4 + K4 obtained by joining two copies of the complete graph with
a single edge.

We will show, however, that in the case of the finite planar square lattice, () always holds

(proposition 75).

Figure 8: The square lattice S4

Iterate over the configurations in a Gray code ordering, storing only the final tally.
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Distribution of graph configurations: Complete graph K3
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Figure 9: The set S for various graphs. The “Siamese graph” K, + K, consists of two copies of Ky,

joined by a single edge.
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Distribution of graph configurations: Square graph S,
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The set S for the 4 x 4 square lattice S4, pictured in fig. 8.

Figure 10
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Proposition 75. Let n > 2 and let G be the finite planar square lattice Sy, (i.e., on n x n vertices.) The

condition (t) holds with strict inequality for every w € Q \ {w® w'}.

Proof. Fix n > 2. The vertex, edge, and face counts for S, are respectively
V=n? E=2nn-1), F=mn-1)>%

Substituting these values into (1) tells us that we must prove

n—1

f <
2n

e (23)

1 1
for every w € Q\ {w® w'}. Our assumption n > 2 implies 1 < S < 7 Thus, if for

]e, and if w’ is obtained from w by

a configuration w € Q the graph G, satisfies f < nZ:L
the removal of one face and at most two edges, then G, satisfies (23). Thus, we may assume (by
induction, filling in faces one plaquette at a time) that each face of G, consists of a single plaquette.
Moreover, the removal of an edge that isn’t incident to a face can only make the inequality (23)
tighter, so we may assume that every edge is incident to a face. In summary, we may assume

without loss of generality that the set of open edges is a union of boundaries of plaquettes, as for

example pictured in fig. 11. (Note a subtlety in the above argument: the all-open w' and all-closed

w? configurations have equality f = n e.) Take an arbitrary such plaquette boundary union

Figure 12: Left: All southeast edges in S5. Right: Some plaquettes in S5 together with their
southeast edges.
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f
w ¢ {w® w'}. Forget (23): we will prove directly the original form, P < % Let Ege = 2(n —1)2
be the number of edges that are directly southeast of some plaquette, all of which are shown in
the first image in fig. 12. Let ese be the number of edges directly southeast of the faces in G,; an

example is shown in the second image in fig. 12. We have ese = 2f and Es = 2F, and therefore
- =, (24)

Let ey, be the number of vertical edges open in w that are not directly east of any face of G,, and ep
the number of horizontal edges not directly south of any face. Thus, e = es + ey + en. The second
image in fig. 12 has ese = 12, ey, =4, and e, = 5. Likewise, let E,, and E,, be the number of vertical
and horizontal (respectively) edges in S,, not already counted by Ege, so that E,y, = E, =n —1and
E =Ese + Ew + En.

Each of the nonempty horizontal rows of plaquettes in G, contributes at least 1 to e,y and at
most n — 1 to f, whereas each horizontal row of plaquettes in G = S, contributes exactly 1 to E,

1 E
‘w o = —% and therefore

—] F. Y = 1
and exactly n — 1 to F. Thus, e =

f ew

—L X, 25

F Ew (25)
Likewise,

f en

- <2, 26

F En (26)

Since we're assuming w ¢ {w®, w'}, there is either some nonempty row or some nonempty column
of faces in G, that has strictly fewer than n —1 faces, so at least one of the inequalities (25) and (26)

holds strictly. Combining (24) to (26) via the mediant inequality*’ gives the required

f
f_ Getewten e .
F  Ee+Eyw+E, E

Incidentally, the ground states of the random-cluster model are unrelated to the ground states of
the Potts model—the Edwards-Sokal coupling doesn’t give any useful connection. But the ground
states of the Potts model are easy to identify (for positive interactions 3 > 0): Assign equal spins
to the vertices within each connected component of G. More generally, in the higher Potts model

with free boundary condition, the ground states are the cocycles (elements of Z"~1(X, Z/qZ).)

“The mediant inequality is: £ < £ = & < &

b,d > 0.

and § < § = £ < &5 < £, where a,b,¢,d € Rand

<
d d b+d
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16

21

26

31

36

Appendix: Code listings

This Python 3 code was used to generate figs. 9 and 10 in section 6.3.

from collections import defaultdict

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

# Graph data format:

#
#
#

(vertices, edges) where:

vertices is a set

edges is a set of unordered pairs (as frozensets) of vertices

# Only simple connected finite graphs are supported.

# Return graph:

def make_square_graph(n):

def z2dist(edgel, edge2):

Square lattice with side length n (i.e., n*n vertices.)

return abs(edgel[0] - edge2[0]) + abs(edgel[1] - edge2[1])

vertices = set([(x, y) for x in range(n) for y in range(n)])

edges = set([frozenset({v, w})
for v in vertices
if z2dist(v,w) ==

return (vertices, edges)

for w in vertices

1D

# Return graph: Complete graph on n vertices.

def make_complete_graph(n):

# Return graph:

assert 1 <= n and n <= 4 # K_n is not planar for n > 4.

vertices = set(range(n))

edges = set([frozenset({v,w}) for v in vertices for w in vertices if v

return (vertices, edges)

def make_siamese_graph(n):

assert n >= 1 # Otherwise, can’t join them.

vertices_a = set(range(0®, n))

Two copies of complete graph K_n,

joined by a single edge.

I= wl)

edges_a = set([frozenset({v,w}) for v in vertices_a for w in vertices_a if v

vertices_b = set(range(n, 2*n))

edges_b = set([frozenset({v,w}) for v in vertices_b for w in vertices_b if v

joiner = frozenset((0, n))
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return (set.union(vertices_a, vertices_b),

set.union(edges_a, edges_b, {joiner}))

# Return the number of clusters.
41 def num_clusters(graph):
remaining_vertices = set(graph[0])
remaining_edges = set(graph[1l])
count = 0
while(len(remaining_vertices) > 0):
46 incident_vertices = set((remaining_vertices.pop(),))
current_cluster = set(incident_vertices)
while(incident_vertices != {}):
incident_edges = set()
for v in incident_vertices:
51 new_incident_edges = set(filter(lambda e: v in e, remaining_edges))
incident_edges = incident_edges.union(new_incident_edges)

remaining_edges = remaining_edges.difference(new_incident_edges)

current_cluster = current_cluster.union(incident_vertices)
if len(incident_edges) == 0:

56 incident_vertices = {}
else:

incident_vertices = set.difference(
set(frozenset.union(*incident_edges)),
incident_vertices
61 )
count += 1
remaining_vertices = remaining_vertices.difference(current_cluster)

return count

66 # Return a list of all subsets of s.
def powerset(s):
def _powerset(s):
if len(s) == 0:
return [set()]
71 x = s.pop(Q)
tail = powerset(s)
return tail + [t.union((x,)) for t in tail]

return _powerset(set(s))
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76

def graph_configurations(graph):

vertices, edges = graph

for edge_subset in powerset(edges):

yield (vertices, edge_subset)

81 # Return a (default)dict with keys (e, c) and values n, such that n is the number

86

91

96

101

106

111

# of configurations that have e edges and c¢ clusters. All entries will have n >= 1.

def ledger(graph):
1 = defaultdict(lambda: 0)

for g in graph_configurations(graph):

1[(len(g[1]), num_clusters(g))] += 1;

return 1

if __name__ == "__main__":

# Generate the data

data = ledger (make_square_graph(4))

graph_name = "Square graph $S_4§"

#data = ledger (make_complete_graph(4))

#graph_name = "Complete graph $K_43%"

#data = ledger(make_siamese_graph(4))

#graph_name = "Siamese graph $K_4 + K_43"

# Plot the data

plt.figure(dpi=300) # High resolution

plt.rc(’axes’, axisbelow=True)

# Grid behind everything else

plt.grid(True, which="both", color="lightgrey")

data_flat = [(k[0], k[1], v) for (k, v) in data.items()]

e_values = np.array([i[0] for i in data_flat])

c_values = np.array([i[1] for i in data_flat])

plt.scatter(e_values, c_values,

for e,c,n in data_flat:
label = "{:g}".format(n)

plt.annotate(n,

color="red’)
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121

126

plt.
plt.
plt.

plt

plt.
plt.

(e,c),

textcoords="offset points",

xytext=(8,7), # label offset

ha=’center’,

arrowprops=None,

fontsize=6

)
gca().xaxis.set_major_locator(matplotlib.ticker.MultipleLocator (1))
gca().yaxis.set_major_locator(matplotlib.ticker.MultipleLocator (1))

title("Distribution of graph configurations: + graph_name)

.xlabel("$o(\omega)$ (number of open edges)")

ylabel ("$k(\omega)$ (number of clusters)")
show ()
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